COSMICi: High Energy Particle Detector

Group 6:

Aarmondas Walker - Team Leader George Chakhtoura - Co- Team Leader Samad Nurideen - Secretary Brian Kirkland - Treasurer Juan Calderin Michael Dean

Problem Statement

Phase I

 The detectors will send voltage pulses through coaxial cables to an FPGA for digitization.

- This data will be wirelessly transmitted to the kiosk.
- Bit width reduction to make room for new inputs
- Desired frequency of final design will be 500MHz
- The system components will have a mounted enclosure
- Detectors will be installed at the Challenger Learning Center

Intended Users

Intended Users

- Will be implemented in learning centers
 - Challenger Learning Center
 - High Schools
 - Libraries
 - Astrophysicists

Intended Use

- Capture Cosmic Ray Shower events
- Triangulate location
- Contribute Data to MARIACHI (Mixed Apparatus for Radar Investigation of Atmospheric Cosmic-rays of High Ionization) data sets

Logic Locking of High-Speed Components and Bit-Width Reduction

Michael Dean
 Computer & Electrical Engineering

Performance Assessment: After Bit-Width Reduction

- The internal timing counter was 64-bits wide, giving over 10 years data values
- This value was reduced to 56-bits and still give 4.5 years
- The system memory improvements after reduction: Before:
 - Slow Corner Fmax for high-speed counter: 211.28MHz
 - Logic Utilization: 24,314 / 27,104 (90%) = 2,790 remaining
 - Dedicated logic registers used: 21,878 / 27,104 (81%) = 5,226 remaining
 - M512 blocks: 193/202 (96%) = 9 remaining
 - M4K blocks: 144/144 (100%) = 0 remaining
 - M-RAM blocks: 1/1 (100%) = 0 remaining

After:

- Slow Corner Fmax for high-speed counter: 213.13 MHz (slightly better)
- Logic Utilization: 22,007 / 27,104 (81%) = 5,097 remaining (almost 2x better)
- Dedicated logic registers used: 19,463 / 27,104 (67%) = 7,641 remaining
 - M512 blocks: 188/202 (93%) = 24 remaining (more than 2x better)
 - M4K blocks: 144/144 (100%) = 0 remaining (same)
 - M-RAM blocks: 1/1 (100%) = 0 remaining (same)

Logic Lock: Components of the System

- The high-speed components in this system, those using the Phase-Locked Loop (PLL) line, will be sped up from their current 211 MHz to 500MHz
- High-speed time-counter
- Input Capture Datapaths
- Photo-multiplier Tube Pulse Digitizer
- Pulseform Capture Datapath
- Pulse Prep
- SE Pulse Cap

dk i	rise_s(Ui_eize-10) =
pulse in	rise c[bit size, 1] =
ever semijet wav-1.0)	tell sjud scart0]
cac carry[bit apa1]	tal cibit sca .1) =
be core	bs prod
sever	
archie	

	I 1				
nderCountIBIT_3[7E-1_0]					
Contercountpirt Size-1					
contercarry[B11_812E.11]	Г				
	counterCarry[BIT_SIZE1]				

Logic Lock

- In order to increase the Front-End Digitizer Module (FEDM) to an operational frequency of 500MHz Quartus' Logic Locking feature will be utilized
- This will be applied to the high-speed components to allow us to specify multiple properties about the logic locked region
- Logic Locking has several settings:
 - State Floating or Locked
 - Size Auto or Fixed
 - Reserved On/Off -
 - Enforcement Hard or Soft
 - Origin Floorplan Location

L	ogicLock Regions						×
	Region name	Size	State	Width	Height	Origin	
	🖻 쭴 LogicLock Regions						
	- 🗖 Root_region	N/A	N/A	N/A	N/A	N/A	
	- 🗖 < <new>></new>						
	🕀 🕞 filter_filter:filter_i0	Fixed	Floating	17	5	ESB_1_I2	
	🖲 🔁 filter_filter:filter_i1	Fixed	Floating	17	5	ESB_1_I2	
	🗉 🔁 filter_filter:filter_i2	Fixed	Floating	17	5	ESB_1_I2	
	🖲 🔁 filter_filter:filter_i3	Fixed	Floating	17	5	ESB_1_I2	

Logic Lock Application

All components utilizing the PII_clock line will be locked

• How to apply it:

State - Floating or Locked

- Floating regions allow Quartus to determine the appropriate
- location of the block, while Locked uses a user defined location
- Size Auto or Fixed
 - Auto lets Quartus handle sizing while Fixed uses user defined sizing and shaping
- Reserved On/Off -
 - Enabling allows Quartus to utilize resources from this region for entities not assigned to this region

Enforcement - Hard or Soft -

Soft enforcement allows deference of the region to timing constraints, allowing entities to leave region if performance is improved. Hard enforcement does not abide by the relocation of entities

• Origin - Location on Floorplan -

Defines where the logic lock region is at

Logic Lock: Components Utilizing PLL_Clock

Below is a graphical image of how the ICDP utilizes the PLL_clk line

Input Capture Datapath Ch O "pmt_ic_datapath2_56.bdf"

Circuit Speed: Testing Methodolgy

- To test the circuit speed the Classic Timing Analyzer Tool will be used
- After compiling the project this feature can be used to get an estimate on where the circuit board is currently operating with the FEDM design

😂 Classic Timing Analyzer Tool	
Registered Performance tpd tsu tco th Custom Del	ays
Clock:	
Value	
From	
То	
Clock period	
Frequency	

Aarmondas WalkerComputer Engineering

 The TSDP is being modified to disregard the voltage thresholds 2-6. It is now only concerned with the first voltage threshold. This module will only be triggered by the rising edge of the threshold.

Before Modifying

eform cap 56		clk	out_hs_prod
ns_cons1 oll_clock csc_sum[550] csc_carry[561] ooard_clock /Vave[16] reset enable	last_crossed[20] hs_prod lead_th1[550] trail_th1[550] lead_th2[550] trail_th2[550] lead_th3[550] trail_th3[550] lead_th4[550] lead_th5[550] trail_th5[550] lead_th6[550] trail_th6[550]	in_hs_prod out_hs_cons last_crossed[20] lead_th1[550] trail_th1[550] lead_th2[550] trail_th2[550] lead_th3[550] trail_th3[550] lead_th4[550] lead_th5[550] trail_th5[550] lead_th6[550] trail_th6[550] reset	in_hs_cons last_cr[20] th1_ld[550] th1_tr[550] th2_ld[550] th3_ld[550] th3_ld[550] th4_ld[550] th4_ld[550] th5_ld[550] th6_ld[550] th6_tr[550] BUF_FULL

After Modifying

	· · · · · · · · · · ·	••••	•••	•••	•••			•••	•••		•••	•••	•••	•••	•	•••	•••		•••	••	stream_pulse_data_tsedge_56
pulseform_cap_tsedge	_56														÷		•••		111		- the
0 La Variad	her		• •	.,		2.0.0								(1997) (1997)	• • •	12.7	12.7	127	111	. pro	d un
	last_crossed[2v]	12	117	17.7	11			ŀ	•••							111	11.1	111	111	111	ac: threeki7 (1)
pil_cock	had theres of		• •	17.2	•••	•••	• •	11	•••	1717	17.7	17.7		17.7	17.7	17.7	17.7	17.7	17.7	12.2	
csc_sunito.toj	sync error	syn	o_em	vr	×	11	11	111			11		11	11			11	11	187	17.7	- oumo data
board bock	Sync Gree			11		::	::		 	::	::		::					::		11	rese:
Wave				••	•••				· ·						•••					· F	enable.
reset			••	••	••				•••	•••		••		••	••	••	••		••		inst3
enable			•••						••							••					La contracta de
						::	::			::	::		::					::			
inst1																		::			
				::				::							::	· · ·					

Timing-Sync Datapaths: Testing

Module used for testing

			Parame	ter Vali	ue Type
:			: N	8	Signed Integer
<mark>P</mark> str	eam_time_pulse_out_te	st ^u		· · · · · · ·	
∴sys_clk ≺	clk	pump data -	p	id3×	
	have_data	data_word_out[n-10]		est_data_	out[70]
	data_word_in[310]			· · · · · ·	
i i i i in	st12				· · · · · · · · · · · · · · · · · · ·

Timing-Sync Datapaths: Testing (cont.)

Has an input of one word

 Acquires two words from input
 data is output sequentially

Timing-Sync Datapaths: Testing (cont.)

10 Q	uartus	II - [stre	eam_time	_pulse_out_te	st.vhd]	-						10000	-	
File	Edit	View	Project	Processing	Tools W	/indow								
		92												
		93		case	cur	_state	is							
6 99 1	B	94			when	waiting	for da	t a	=>			Waiting f	or tead	re dat
{}		96			witch	warting	,a	ica	-/			Warting I	UI USEU	ge_uat
	rie	97			if	(have da	ata = '1	•)	then	-		When hav	e data	is 1,
		98				- 197 (- 1 97								
1	*	99				pumpdat	a	<=	'1'	;				'
23	×	100												
		101				cur_sta	ite <=	•	wait_ic	r_data	1;	g	oing to	the s
		102			end	if:								
		104												
067		105			when	wait_fo	or_data	=>						
268	ap/	106												
	:	107			cur	_state	<=	sen	ding_out	_data;	21			
	2	108							-					
_	-	110			when	senarno	_out_da	ila	->					
		111			cas	e which	byte is	3						
		112				-								
		113				when 0	=>							
		114				dat	a_word_	out (7	downto	0) <	(=	data_wor	d_in(31	downt
		115				and and a								
		117				dat	->	out (7	downto	0) <	-	data wor	d in (23	downt
						uat		_040()	downoo	<i>,</i> ,			u_111(25	GOWIN
-														

For Help, press F1

Front end digitizer module(FEDM)

Juan Calderin
Computer Engineering

Front End Digitizer Module

• Purpose:

 To digitalize the analog signals from the cosmic ray detectors and have them ready for the server to process them.

 Mainly written in C and VHDL

Front End Digitizer Module (updates)

A new "driver" has been added to the firmware to handle the new timing sync data path.

Front End Digitizer Module Function Declarations

extern	void	tsdp_init(void);	// To be called by main().
extern	void	tsdp_reset(void);	// Resets the state of the timing input capture data path // ensuring stored data is cleared.
extern extern	void void	tsdp_run(void); tsdp_pause(void);	<pre>// Enable the timing-input-capture datapath to start or continue running. // Pause the operation of the input-capture datapath. (Lower TSDP enable.)</pre>
11	Event 1	handlers for the input	-capture interrupts. Called from interrupt.c.
extern	void	tsdp_handle_have_da	ta (void); // Call TSDP_have_data isr. No paramaters necessary. // (as opposed to icdp; have_data could go low for // three different channels)
extern	void	tsdp_handle_sync_er	cor (void); // Call timing sync_error

Test Plan

Using debug statements (diagnostics function) to check that correct timing data is being sent and processed.

(/		
111		
//1	tcdp_diagnostics()	[private procedure]
171		
111	Verbosely display a bunch of	descriptive information
11	about a pulse on the JTAG dek	oug port (stdout).
(/1		
11000	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Central Server

• Purpose: to process and graphically display

- the data coming wirelessly from the FPGA.
- Written in Python
- The server will be running in the kiosk computer located in the Challenger Learning Center.

Central Server (updates) Behind schedule

• Task(s):

- Analysis & visualization of incoming pulses
- Database storage of pulse data for offline analysis
- Information Display: We can use the VPython libraries for 3D display. Integrate it with Google Sky using the Google Earth API.

Test Plan

 Long term testing to check that data has been received.

Power Supply

Samad NurideenElectrical Engineering

Powering Components

BOTTOM

Power Supply % Completion

Power Supply – 80% of Overall Task Goal

<u>Subtasks:</u>

Power FEDM – 10% Complete 10/5/11 Power CTU – 10% Complete 10/19/11 Power both CTU and FEDM – 70% 0% Provide Power for detectors – 10% 0% POWER SUPPLY GOAL IS 20% COMPLETE

Battery – 20% of Overall Task Goal

<u>Subtasks:</u>

Research – 30 % Complete 10/20/11 Order Parts – 10% 5% Implement – 40% 10% Test – 40% 10%

55 % OF BATTERY GOAL IS COMPLETE

Structural Support & & Enclosure Design

Brian Kirkland
Mechanical Engineering

New Structural Design

- 2 I Beam connected support structures.
 - For single detector and component enclosure.
- Two Shelving unit support structures. • For remaining two detectors.

Structural % Completion

Scintillator Support – 75% of Overall Task Goal

<u>Subtasks</u>:

- Scintillator Measurement 10% Complete 10/07/11
- Room Measurement– 10% Complete 10/14/11
- Fastening Method Analysis 50% Complete 11/05/11
- Part Ordering-20% TBD
- Design Implementation 10% TBD <u>70% OF OVERALL STRUCTURAL SUPPORT GOAL COMPLETE</u>

Enclosure: Summary

 Enclosure built to house system hardware components.
 Singular location for all needed accessible components.
 Protection from physical shock, dust, and debris.
 Comprised of two piecess.
 Base plate
 Plastic cover

Enclosure System Test Fit

Wired circuit boards to be fitted to base-plate.
White chalk outline on base plate

Relative position
Boards
Cooling system
Power supply
Fasteners
Use relative positions to finalize board design

Attach to I beam support structure

Enclosure testing

Failure test

Determine if base plate can hold prescribed weight without failing(cracking or deflecting > 5mm)
 Using 80 lbs of weight centrally loaded board was tested and did not fail Feb 6th
 Board was supported on four corners as would be with structural supports

Enclosure % Completion

Complete

<u>Subtasks:</u>

Base plate: 45%

 Designing : 31.5%
 Machining: 13.5%

 Clear Cover: 45% 20%

 Designing: 27%
 Machining: 9%
 Fabrication: 9%

 Assembly: 10 % 0%

 Fabrication: 10%

• 45% OF OVERALL ENCLOSURE GOAL COMPLETE

Cooling System

George ChakhtouraMechanical Engineering

Cooling System

Components include:

- Polyurathane Coated Copper Heat Transfer Rod
- Thermoelctirc Cooler Plate
- Copper Fin Heat SInk Fan Assembly

Cooling System Cont...

- Copper has 2X the thermal conductivity of Aluminum and 3X that of Stainless Steel, thus the material change for the heat pipe and fins.
- The new heat sink fan assembly will provide suffcient air flow as well as serve for aesthetic pleasing.

Q=k*a*(Thot-Tcold)/d Established Heat Rate (from current system) Q= 126.563 W

Cross Sectional Area a= 5cm² Desired Rod Length d= 8.4cm Thermal Conductivity of Copper k= 401 W/m*K Running Temperature (Thot) Thot= 53°C (326K)

Desired Running Temp(Tcold) Tcold= 0°C (273K)

Updated Specs With New Thermoelectric Cooler Q=70W =>Desired Rod Length d=3.3cm

Cooling System Components And Testing

 The figure below illustrates a mock representation of the Copper heat transfer rod and Infarred Thermometer that will be used during testing.

Rubberized coating test failed.
Condensation build up
System Test 1

Feb. 13
Using current thermoelectric cooler.

System Test 2

Feb 29 - Mar 2
Using new thermoelectric cooler

Testing Risk Assessment: Cooling System

Possible dislodgment of heat transfer rod: Low

 Countermeasures: The cooling system will be mounted and supported inside the enclosure to provide additional stability.

 Possible occurrence of condensation: Extremely Low

 Countermeasures: Thicken 2mm polyurathane insulation wall.

 Possibility of not reaching optimal temp: Extremely Low

 Countermeasures: Use current thermoelectric cooler.

Cooling % Completion

<u>Subtasks</u>:

Temperature Measurements of Chip and Board –5% Physical Measurements of all Boards – 5% Peltier cooler, fins, and fan cad design – 15% Solve Condensation Issue –10%

Provide heat equations showing chip temp – 30% Order correct size peltier cooler, fins and fan –5% Connect cooling system to structure–5% Test for Issues–25% Complete 11/07/11 Complete 10/20/11 Complete 11/08/11 Complete 11/08/11 Complete 11/28/11 Complete 02/01/12 0% 0%

70 % COOLING SYSTEM GOAL IS COMPLETE

General Information

Aarmondas Walker Computer Engineering Brian Kirkland Mechanical Engineer

Expected Deliverables

• Phase I:

COSMICi System will detect UHECR from at least 3 scintillator devices

- The system will operate at a frequency of 500mhz
- The direction and source of the cosmic ray shower will be displayed to the user
- in the kiosk computer in the form of a sky map (possibly physics dept. task).
- A power source will be configured to supply all the components
- \circ An enclosure will protect the circuit boards
- A Cooling System will maintain the FPGA chip at 0 C and the circuit boards at room temperature
- A structural design will support the scintillator-detectors and the enclosure

Budget

D. Expense	Quantity	Unit Price \$	Total \$	
Equipment				
Structural Support				
Beam Clamp 3/8"	4	2.39	9.56	
Threaded Rod 3/8"	4	8.89	35.56	
Hex Nut Full 3/8" 100PK	1	6.28	6.28	
Flat Washer 3/8" 100 PK	1	5.09	5.09	
Cooling System				
Peltier Cooler	2	7.50	13.00	
Heat Pipe	1	41.00	41.00	
Enclosure				
Acrylic Cover	1	68.57	68.57	
Birch Plywood Baseplate	1	9.99	9.99	
Total Equipment Cost			210.32	
Total Project Cost			210.32	

.

Overall Risk Assessment

Technical Risks

- Structural System Malfunction
- Datapath Malfunction
- Operational Frequency Issues

Schedule Risks

- Datapath
- Enclosure Completion

Budget Risks

- Underestimation of Costs/Parts
- Not Enough Funding

• Other Risks

- Engineers Getting Sick
 - Hindering Completion of Portion
- Engineers Dropping Out of Project

Gantt Chart - Update

	0	Task Name	Duratio 👻	Start 💌	Finish 💌	Predecessors	R
7	V 🖗	Visit Challenger Learning Center	1 day	Tue 10/25/11	Tue 10/25/11		
8		MECHANICAL ENGINEERING SIDE	87 days?	Mon 10/3/11	Fri 1/27/12		Π
9		± STRUCTURAL SUPPORT	87 days?	Mon 10/3/11	Fri 1/27/12	1	J
18		ENCLOSURE DESIGN	31 days?	Fri 11/4/11	Wed 12/14/11		E
26		E Cooling Ststem Design	61 days?	Mon 11/7/11	Fri 1/27/12		e
35		ECE SIDE	83 days?	Mon 10/3/11	Mon 1/23/12		
36		Increase Input Datapaths	77 days?	Tue 10/11/11	Mon 1/23/12		A
43		Circuit Speed Optimization	19 days?	Mon 11/21/11	Thu 12/15/11	39	J
48		Power Supply	82 days?	Mon 10/3/11	Fri 1/20/12		Ş
56		🗉 Detailed Design Report	11 days?	Sat 11/5/11	Thu 11/17/11		Ĩ
62		Python Server	53 days?	Wed 1/4/12	Fri 3/16/12		Ē
63		Server Coding Workshop	3 days?	Wed 1/4/12	Fri 1/6/12		
64	T	Determine Tasks/Split Task	1 day?	Fri 1/13/12	Fri 1/13/12	63	
65		Research/Determine Solution	1 day?	Fri 1/27/12	Fri 1/27/12	64	Ē
66		Coding	35 days?	Mon 1/30/12	Fri 3/16/12	65	
and the second			100000000000000000000000000000000000000			285	-

ant Cha

Completed Tasks - ECE

35		E ECE SIDE	83 days?	Mon 10/3/11	Mon 1/23/12
36		Increase Input Datapaths	77 days?	Tue 10/11/11	Mon 1/23/12
37	\checkmark	Review current code	9 days	Tue 10/11/11	Fri 10/21/11
38	\checkmark	Creat plan to decrease width	3 days	Fri 10/21/11	Tue 10/25/11
39	\checkmark	Decrease Width	4 days	Wed 10/26/11	Mon 10/31/11
40	~	Add Input	32 days?	Thu 12/1/11	Fri 1/13/12
41	\checkmark	Check for errors	4 days?	Mon 1/16/12	Thu 1/19/12
48		Power Supply	82 days?	Mon 10/3/11	Fri 1/20/12
49	~	Provide Power for FEDM	3 days	Mon 10/3/11	Wed 10/5/11
50	\checkmark	Alternative Power Solutions	13 days	Tue 11/15/11	Thu 12/1/11
51	\checkmark	Research Solution	3 days	Tue 12/6/11	Thu 12/8/11
52	~	Feasibility Study	3 days	Tue 12/6/11	Thu 12/8/11

Completed Tasks -ME

8		MECHANICAL ENGINEERING SIDE	87 days?	Mon 10/3/11	Fri 1/27/12
9		- STRUCTURAL SUPPORT	87 days?	Mon 10/3/11	Fri 1/27/12
10	\checkmark	Idea Generation Phase	8 days	Mon 10/3/11	Wed 10/12/11
11	1	Idea Evaluation	1 day	Tue 10/18/11	Tue 10/18/11
12	~	Feasible Approaches	1 day	Wed 11/9/11	Wed 11/9/11
18		ENCLOSURE DESIGN	31 days?	Fri 11/4/11	Wed 12/14/11
19	1	Get PCB sizes	1 day	Fri 11/4/11	Fri 11/4/11
20	1	Get approx cooling system size	1 day	Fri 11/11/11	Fri 11/11/11
21	1	Design system	9 days	Sat 11/12/11	Wed 11/23/11
22	1	Material Selection	7 days?	Sat 11/12/11	Mon 11/21/11
26		Cooling Ststem Design	61 days?	Mon 11/7/11	Fri 1/27/12
27	~	Get board Measurments	1 day?	Mon 11/7/11	Mon 11/7/11
28	\checkmark	Get FPGA chip max running temp	1 day?	Mon 11/7/11	Mon 11/7/11
29	~	Design Sstem	2 days?	Mon 11/14/11	Tue 11/15/11
30	~	Find best metal for conduction/ material selection	1 day?	Mon 11/14/11	Mon 11/14/11
31	1	Design Calculations	5 days?	Mon 11/14/11	Fri 11/18/11
32	1	Order Materials	1 day?	Mon 12/5/11	Mon 12/5/11

Presentaion Dedicated to J. Pascal Desmangles Bright Spirit, Brilliant Mind, Devoted Teammate

Questions?

Works Cited

- Ashby, Michael F. Strengh vs Density. Digital image. Grantadesign.com. Web. 3 Nov. 2011. http://www.strength_density.pdf
 Cosmicrays2. Digital image. Http://www.aspera-eu.org. Web. 3
- Nov. 2011. <http://www.aspera-eu. org/images/stories/Media/MEDIAPICTURES/HR/cosmicrays2. jpg>.
- Cosmic Inquirer blog by Miichael P. Frank.

Appendix

Detector Support Design

Material Selection

Need To use plots from Ashby's textbook to find the best material

- Material Index
 - Shows which guide lines to use
 - Gives an idea of which plots to use

Must use Modulus vs. Relative cost plot

Relative cost

 $C_{v,r}$

Necessary to correct values and remove influence of inflation and units of currency

 $= \frac{\frac{Cost_{material \ selection}}{kg} * Density \ of \ material \ selection}{\frac{Cost_{steel}}{kg}} * Density \ of \ mild \ steel \ rod$

Process selection

- Wood is a natural material
- Birch plywood is prefabricated in sheets with specific thickness and sizes
- The only Real feasible option for processing wood is conventional machining
- The finishing process will involve sanding and coating with varnish to bring out the natural aesthetics of the wood grain

Material Choice: References

- Aluminum Plate. Digital image. Made-in-china.com. Web. 29 Nov. 2011. < http://image.made-in-china.com/2f0j00bBpEIOzJZvuV/Fireproof-Aluminum-Plate.jpg>.
- Ashby, M. F. *Materials Selection in Mechanical Design*. Burlington, MA: Butterworth- Heinemann, 2011. Print.
- Baltic Birch Plywood. Digital image. Web. 29 Nov. 2011. < http://images.rockler. com/rockler/images/63388-01- 200.jpg>.
- "MDF Board FAQ Tutorial." DIY Audio & Video FAQs, Tutorials, and Calculators for Speaker Boxes, Crossovers, Filters, Wiring and More. Web. 29 Nov. 2011. http://www.diyaudioandvideo.com/FAQ/MDF/.

Drawings (vent)

Drawings (sprinkler)

Drawings (iBeam)

Drawings (electrical)

