COSMICi: High Energy Particle **Detector**

Group 6:

Aarmondas Walker - Team Leader George Chakhtoura - Co- Team Leader Samad Nurideen - Secretary Brian Kirkland - Treasurer Juan Calderin Michael Dean

Problem Statement

● Phase I

● Phase II

- The detectors will send voltage pulses through coaxial cables to an FPGA for digitization.
- This data will be wirelessly transmitted to the kiosk.
- Bit width reduction to make room for new inputs
- Desired frequency of final design will be 500MHz
- The system components will have a mounted enclosure
- Detectors will be installed at the Challenger Learning Center

Intended Users

● Intended Users

- Will be implemented in learning centers
	- Challenger Learning Center
	- High Schools
	- Libraries
	- Astrophysicists

● Intended Use

- Capture Cosmic Ray Shower events
- Triangulate location
- Contribute Data to MARIACHI (Mixed Apparatus for Radar Investigation of Atmospheric Cosmic-rays of High Ionization) data sets

Logic Locking of High-Speed Components and Bit-Width Reduction

● Michael Dean ● Computer & Electrical Engineering

Performance Assessment: After Bit-Width Reduction

- The internal timing counter was 64-bits wide, giving over 10 years data values
- This value was reduced to 56-bits and still give 4.5 years
- The system memory improvements after reduction: Before:
	- Slow Corner Fmax for high-speed counter: 211.28MHz
	- Logic Utilization: 24,314 / 27,104 (90%) = 2,790 remaining
	- Dedicated logic registers used: $21,878 / 27,104 (81%) = 5,226$ remaining
	- \bullet M512 blocks: 193/202 (96%) = 9 remaining
	- M4K blocks: $144/144$ (100%) = 0 remaining
	- \bullet M-RAM blocks: 1/1 (100%) = 0 remaining

After:

- Slow Corner Fmax for high-speed counter: 213.13 MHz (slightly better)
- Logic Utilization: 22,007 / 27,104 (81%) = 5,097 remaining (almost $2x$ better)
- \bullet Dedicated logic registers used: 19,463 / 27,104 (67%) = 7,641 remaining
	- \bullet M512 blocks: 188/202 (93%) = 24 remaining (more tha n 2x better)
	- M4K blocks: $144/144$ (100%) = 0 remaining (same)
	- \bullet M-RAM blocks: 1/1 (100%) = 0 remaining (same)

Logic Lock: Components of the System

- The high-speed components in this system, those using the Phase-Locked Loop (PLL) line, will be sped up from their current 211 MHz to 500MHz
- High-speed time-counter
- Input Capture Datapaths
- Photo-multiplier Tube Pulse Digitizer
- Pulseform Capture Datapath
- Pulse Prep
- SE Pulse Cap

Logic Lock Logic Locking Methodology

- In order to increase the Front-End Digitizer Module (FEDM) to an operational frequency of 500MHz Quartus' Logic Locking feature will be utilized
- This will be applied to the high-speed components to allow us to specify multiple properties about the logic locked region
- Logic Locking has several settings:
	- State Floating or Locked
	- Size Auto or Fixed
	- Reserved On/Off -
	- Enforcement Hard or Soft
	- Origin Floorplan Location

Logic Lock **Application**

• All components utilizing the PII_clock line will be locked

● How to apply it:

○ State - Floating or Locked

- Floating regions allow Quartus to determine the appropriate
- location of the block, while Locked uses a user defined location
- Size Auto or Fixed
	- Auto lets Quartus handle sizing while Fixed uses user defined sizing and shaping
- Reserved On/Off
	- Enabling allows Quartus to utilize resources from this region for entities not assigned to this region

○ Enforcement - Hard or Soft -

■ Soft enforcement allows deference of the region to timing constraints, allowing entities to leave region if performance is improved. Hard enforcement does not abide by the relocation of entities

○ Origin - Location on Floorplan -

■ Defines where the logic lock region is at

Logic Lock: Components Utilizing PLL_Clock

Below is a graphical image of how the ICDP utilizes the PLL_clk line

Input Capture Datapath Ch O "pmt_ic_datapath2_56.bdf"

Circuit Speed: Testing Methodolgy

● To test the circuit speed the Classic Timing Analyzer Tool will be used

• After compiling the project this feature can be used to get an estimate on where the circuit board is currently operating with the FEDM design

Timing-Sync Datapaths: VHDL

● Aarmondas Walker ● Computer Engineering

Timing-Sync Datapaths: VHDL

• The TSDP is being modified to disregard the voltage thresholds 2-6. It is now only concerned with the first voltage threshold. This module will only be triggered by the rising edge of the threshold.

Timing-Sync Datapaths: **/HD**

Before Modifying

Timing-Sync Datapaths: VHDL

After Modifying

Timing-Sync Datapaths: **Testing**

Module used for testing

Timing-Sync Datapaths: Testing (cont.)

● Has an input of one word ○ Acquires two words from input ○ data is output sequentially

Timing-Sync Datapaths: Testing (cont.)

For Help, press F.

Front end digitizer module(FEDM)

● Juan Calderin ● Computer Engineering

Front End Digitizer Module

● Purpose:

● To digitalize the analog signals from the cosmic ray detectors and have them ready for the server to process them.

● Mainly written in C and VHDL

Front End Digitizer Module (updates)

A new "driver" has been added to the firmware to handle the new timing sync data path.

Front End Digitizer Module Function Declarations

Test Plan

Using debug statements (diagnostics function) to check that correct timing data is being sent and processed.

Central Server

● Purpose: to process and graphically display

- the data coming wirelessly from the FPGA.
- **●** Written in Python
- **●** The server will be running in the kiosk computer located in the Challenger Learning Center.

Central Server (updates) **Behind schedule**

● Task(s):

- Analysis & visualization of incoming pulses
- Database storage of pulse data for offline analysis
- **● Information Display**: We can use the VPython libraries for 3D display.Integrate it with Google Sky using the Google Earth API.

Test Plan

● Long term testing to check that data has been received.

Power Supply

• Samad Nurideen **• Electrical Engineering**

Powering Components

TOP BOTTOM

Power Supply % Completion

Power Supply – 80% of Overall Task Goal

Subtasks:

Power FEDM – 10% Complete 10/5/11 Power CTU – 10% Complete 10/19/11 Power both CTU and FEDM – 70% 0% Provide Power for detectors – 10% 0% POWER SUPPLY GOAL IS 20% COMPLETE

Battery – 20% of Overall Task Goal

Subtasks:

Research – 30 % Complete 10/20/11 Order Parts – 10% 5% Implement -40% 10% Test – 40% 10%

55 % OF BATTERY GOAL IS COMPLETE

Structural Support & Enclosure Design

● Brian Kirkland • Mechanical Engineering

New Structural Design

- 2 I Beam connected support structures.
	- For single detector and component enclosure.
- Two Shelving unit support structures. ○ For remaining two detectors.

Structural % Completion

Scintillator Support – 75% of Overall Task Goal

Subtasks:

- Scintillator Measurement 10% Complete 10/07/11
- Room Measurement– 10% Complete 10/14/11
- Fastening Method Analysis 50% Complete 11/05/11
- Part Ordering-20% TBD
- Design Implementation 10% TBD

70% OF OVERALL STRUCTURAL SUPPORT GOAL COMPLETE

Enclosure: **Summary**

○ Enclosure built to house system hardware components. ○ Singular location for all needed accessible components. ○ Protection from physical shock, dust,and debris. • Comprised of two pieces. ○ Base plate ○ Plastic cover

Enclosure System Test Fit

● Wired circuit boards to be fitted to base-plate. ○ White chalk outline on base plate ■ Relative position ■ Boards ■ Cooling system ■ Power supply ■ Fasteners ○ Use relative positions to finalize board design • Attach to I beam support structure

Enclosure testing

● Failure test ○ Determine if base plate can hold prescribed weight without failing(cracking or deflecting > 5mm) **BUsing 80 lbs of weight centrally loaded board** was tested and did not fail Feb 6th ■ Board was supported on four corners as would be with structural supports

Enclosure % Completion

Subtasks:

● Base plate: 45% Complete ○ Designing : 31.5% ○ Machining: 13.5% **● Clear Cover:** 45% 20% ○ Designing: 27% ○ Machining: 9% ○ Fabrication: 9% **● Assembly**: 10 % 0% ○ Fabrication: 10%

● 45% OF OVERALL ENCLOSURE GOAL COMPLETE

Cooling System

● George Chakhtoura ● Mechanical Engineering

Cooling System

Components include:

- Polyurathane Coated Copper Heat Transfer Rod
- Thermoelctirc Cooler Plate
- Copper Fin Heat SInk Fan Assembly

Cooling System Cont...

- Copper has 2X the thermal conductivity of Aluminum and 3X that of Stainless Steel, thus the material change for the heat pipe and fins.
- The new heat sink fan assembly will provide suffcient air flow as well as serve for aesthetic pleasing.

Q=k*a*(Thot-Tcold)/d

Established Heat Rate (from current system) Q= 126.563 W

Cross Sectional Area $a = 5cm²$

Desired Rod Length d= 8.4cm

Thermal Conductivity of Copper k= 401 W/m*K

Running Temperature (Thot) Thot= 53°C (326K)

Desired Running Temp(Tcold) Tcold= 0°C (273K)

Updated Specs With New Thermoelectric Cooler Q=70W =>Desired Rod Length d=3.3cm

Cooling System Components And Testing

● The figure below illustrates a mock representation of the Copper heat transfer rod and Infarred Thermometer that will be used during testing.

● Rubberized coating test failed. ○ Condensation build up • System Test 1 ○ Feb. 13 ○ Using current thermoelectric cooler. • System Test 2 ○ Feb 29 - Mar 2 ○ Using new thermoelectric cooler

Testing Risk Assessment: Cooling System

• Possible dislodgment of heat transfer rod: Low o Countermeasures: The cooling system will be mounted and supported inside the enclosure to provide additional stability. ● Possible occurrence of condensation: Extremely Low ○ Countermeasures: Thicken 2mm polyurathane insulation wall. • Possibility of not reaching optimal temp: Extremely Low ○ Countermeasures: Use current thermoelectric cooler.

Cooling % Completion

Subtasks:

Temperature Measurements of Chip and Board –5% Complete 11/07/11 Physical Measurements of all Boards – 5% Complete 10/20/11 Peltier cooler, fins, and fan cad design – 15% Complete 11/08/11 Solve Condensation Issue –10% Complete 11/08/11 Provide heat equations showing chip temp – 30% Complete 11/28/11

Order correct size peltier cooler, fins and fan -5% Complete 02/01/12 Connect cooling system to structure–5% 0% Test for Issues–25% 0%

70 % COOLING SYSTEM GOAL IS COMPLETE

General Information

Aarmondas Walker Computer Engineering Brian Kirkland Mechanical Engineer

Expected Deliverables

● Phase I:

○ COSMICi System will detect UHECR from at least 3 scintillator devices

- o The system will operate at a frequency of 500mhz
- o The direction and source of the cosmic ray shower will be displayed to the user
- in the kiosk computer in the form of a sky map (possibly physics dept. task).
- A power source will be configured to supply all the components
- An enclosure will protect the circuit boards
- A Cooling System will maintain the FPGA chip at 0 C and the circuit boards at room temperature
- A structural design will support the scintillator-detectors and the enclosure

Budget

٠

Overall Risk Assessment

● Technical Risks

- Structural System Malfunction
- Datapath Malfunction
- Operational Frequency Issues

• Schedule Risks

- Datapath
- Enclosure Completion

• Budget Risks

- Underestimation of Costs/Parts
- Not Enough Funding

● Other Risks

- Engineers Getting Sick
	- Hindering Completion of Portion
- Engineers Dropping Out of Project

Gantt Chart - Update

Completed Tasks - ECE

Completed Tasks -ME

Presentaion Dedicated to J. Pascal Desmangles Bright Spirit, Brilliant Mind, Devoted Teammate

Questions?

Works Cited

- Ashby, Michael F. *Strengh vs Density*. Digital image. *Grantadesign.com*. Web. 3 Nov. 2011. <http://www. grantadesign.com/download/charts/new_strength_density.pdf>
- *● Cosmicrays2*. Digital image. *Http://www.aspera-eu.org*. Web. 3 Nov. 2011. <http://www.aspera-eu. org/images/stories/Media/MEDIAPICTURES/HR/cosmicrays2.
	- jpg>.

● .

• Cosmic Inquirer blog by Miichael P. Frank.

Appendix

Detector Support Design

Material Selection

● Need To use plots from Ashby's textbook to find the best material

- **○ Material Index**
	- **■ Shows which guide lines to use**
	- **■ Gives an idea of which plots to use**

● Must use Modulus vs. Relative cost plot

○ Relative cost

■ **Necessary to correct values and remove influence of inflation and units of currency**

Process selection

- Wood is a natural material
- Birch plywood is prefabricated in sheets with specific thickness and sizes
- The only Real feasible option for processing wood is conventional machining
- The finishing process will involve sanding and coating with varnish to bring out the natural aesthetics of the wood grain

Material Choice: References

- *● Aluminum Plate*. Digital image. *Made-in-china.com*. Web. 29 Nov. 2011. <http: //image.made-in- china.com/2f0j00bBpEIOzJZvuV/Fireproof-Aluminum- Plate. jpg>.
- *●* Ashby, M. F. *Materials Selection in Mechanical Design*. Burlington, MA: Butterworth- Heinemann, 2011. Print.
- *● Baltic Birch Plywood*. Digital image. Web. 29 Nov. 2011. <http://images.rockler. com/rockler/images/63388-01- 200.jpg>.
- *●* "MDF Board FAQ Tutorial." *DIY Audio & Video FAQs, Tutorials, and Calculators for Speaker Boxes, Crossovers, Filters, Wiring and More*. Web. 29 Nov. 2011. <http://www.diyaudioandvideo.com/FAQ/MDF/>.

Drawings (vent)

Drawings (sprinkler)

Drawings (iBeam)

Drawings (electrical)

