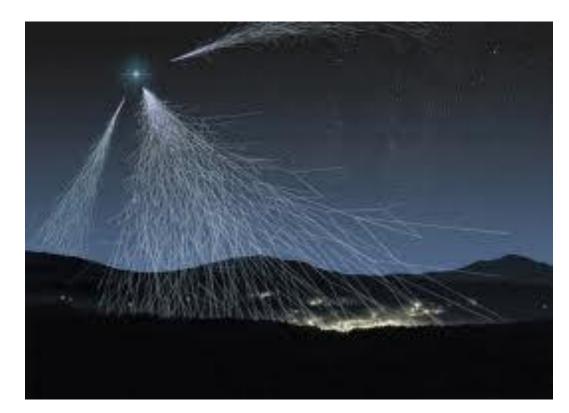
COSMICi: High Energy Particle Detector

<u>Group 25</u> Aarmondas Walker George Chakhtoura Samad Nurideen Brian Kirkland Juan Calderin Michael Dean


0

<u>Sponsor</u> FAMU

Project Goal

Install and implement a network of Cosmic Ray detectors that will triangulate the origins of the Ultra High Energy Cosmic Ray shower events.

Component Overview

- Scintillators
- FPGA
 - Gel Ware
- Network Component Enclosure
- Cooling system
- Structural Supports

Network System Diagram

Concept Generation

- Network System operational speed
 - Use Logic Locking to optimize speed
 - Create more efficient program
- Support Structure for Detectors
 - I Beam Suspension System
 - Wall Mount Brackets
 - CLC Placement

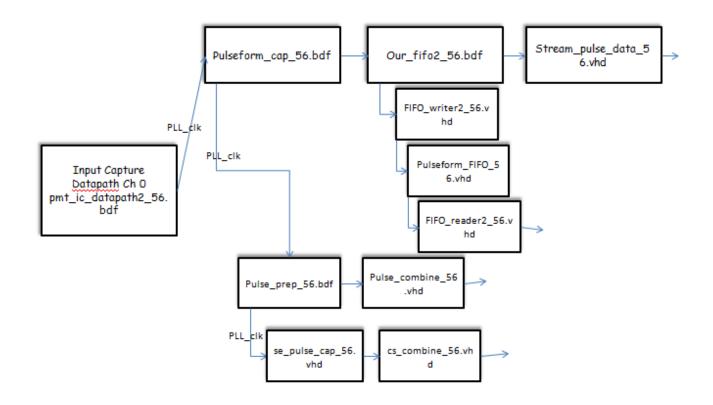
Concept Generation Cont...

- Stratix II Cooling System
 - Simple fan heat dispersal
 - Liquid cooling system
 - Peltier method for isolated heat removal
- Network System Enclosure
 - Enclosed PC tower
 - Transparent enclosure for public aesthetics
 - Solid mounting points for all boards and power supply

Concept Selection

Component	Concept Selection
Network System Operational Speed	Increase current program speed
Detector Support Structure	I Beam suspension and Wall Mount Support
Cooling System	Peltier Method
Network System Enclosure	Base plate with transparent enclosure

Front End Digitizer Module


•Main board that retrieves signals from scintillators and sends to server for data processing.

•Houses Stratix II chip

Input Capture Data Path

Input Capture Datapath Ch O "pmt_ic_datapath2_56.bdf"

Logic Locking of High Speed Components and Bit Width Reduction

The internal timing counter was 64-bits wide, giving over 10 years data values

This value was reduced to 56-bits and still give 4.5 years

Previous Speed 200 MHz Desired Speed 500 MHz Achieved Speed 323 MHz

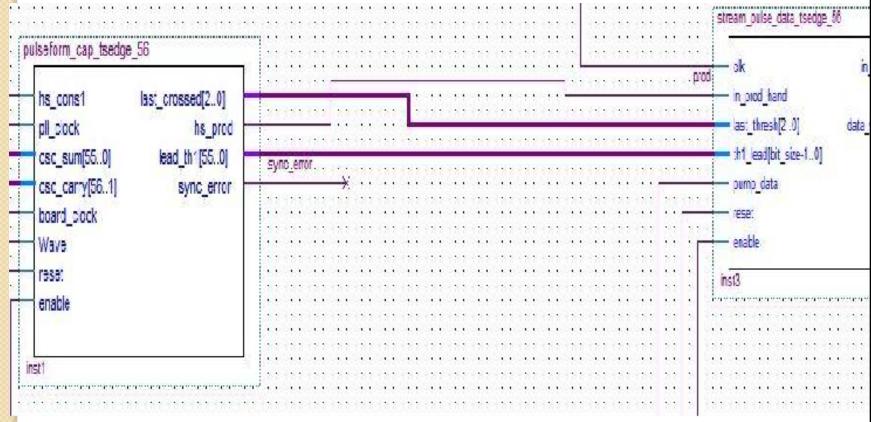
To see the system memory improvement specifications after reduction please refer to <u>Appendix A</u>

Logic Locking Cont...

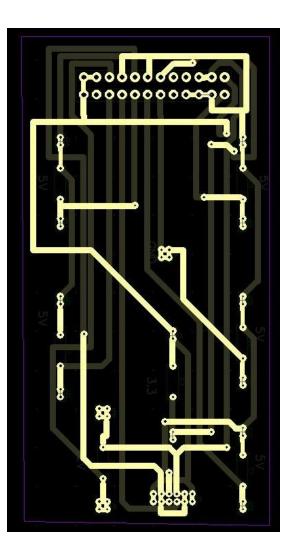
- Utilized Quartus' Logic Locking to obtain optimal operational running speed of 500 MHz
- All components utilizing the PII_clock line will be locked
- Logic Locking settings: State - Floating or Locked Size - Auto or Fixed Reserved - On/Off -Enforcement - Hard or Soft Origin - Floorplan Location

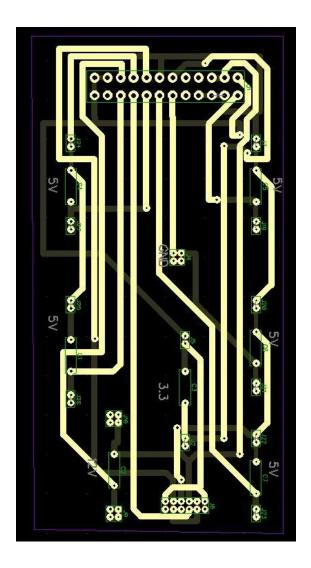
Please refer to <u>Appendix A1</u> for Logic Locking methods

Timing Sync Data Paths

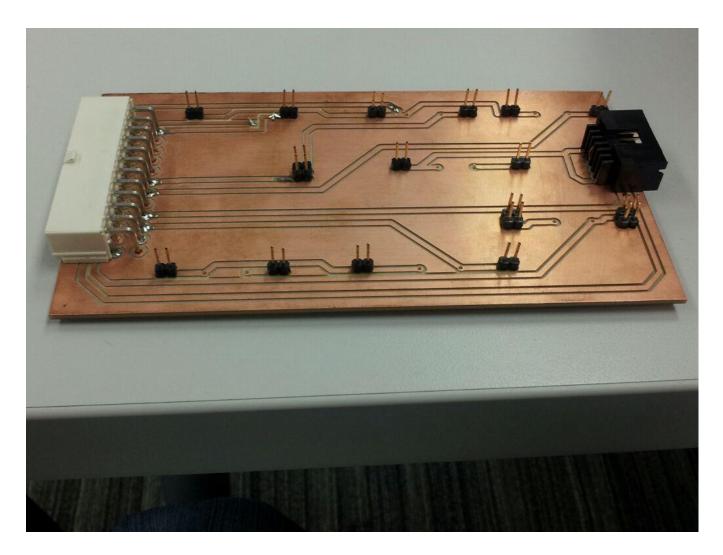

Before Modification

seform_cap_56		clk	out_hs_proc
		in_hs_prod	in_hs_cons
hs_cons1	last_crossed[20]	out_hs_cons	last_cr[20]
pll_clock	hs_prod	last_crossed[20]	th1_ld[550]
csc_sum[550]	lead_th1[550]	 lead_th1[550]	th1_tr[550]
csc_carry[561]	trail_th1[550]	trail_th1[550]	th2_ld[550]
board_clock	lead_th2[550]	 lead_th2[550]	th2_tr[550]
Wave[16]	trail_th2[550]	trail_th2[550]	th3_ld[550]
reset	lead_th3[550]	lead_th3[550]	th3_tr[550]
enable	trail_th3[550]	 trail_th3[550]	th4_ld[550]
	lead_th4[550]	lead_th4[550]	th4_tr[550]
	trail_th4[550]	trail_th4[550]	th5_ld[550]
	lead_th5[550]	lead_th5[550]	th5_tr[550]
	trail_th5[550]	trail_th5[550]	th6_id[550]
	lead_th6[550]	lead_th6[550]	th6_tr[550]
	trail_th6[550]	trail_th6[550]	BUF_FULL
		reset	and the strength of the

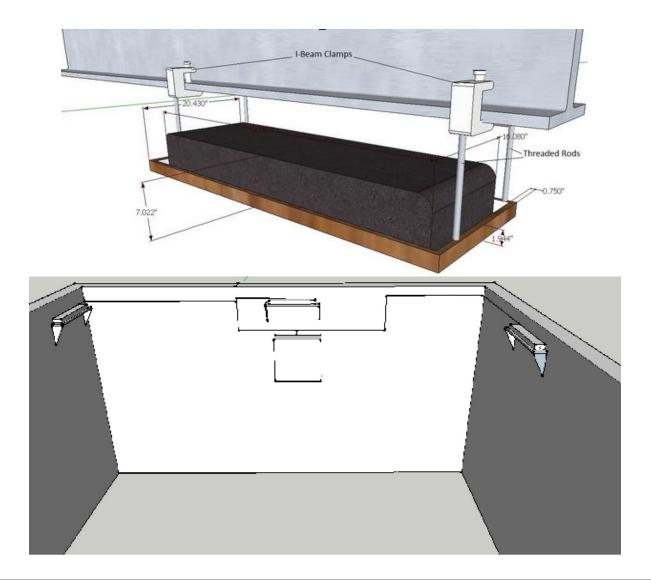

Timing Sync Data Paths Cont...


After Modification

• Testing Shown in <u>Appendix C</u>



Power Distribution Board


Final Power Board

Detector Support Structure

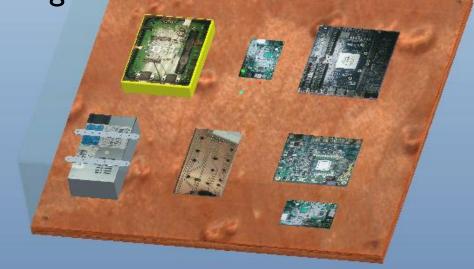
- 3 Scintillators
 - Each 30' apart creating equilateral triangle
 - Two shelf mounted
 - One suspended from I Beam through dropdown ceiling
- Wired to central network enclosure

Suspension & Shelving Design

Suspension & Shelving Design Cont...

- Components of shelving units:
 - Each detector is placed in a foam insulated gun case weighing 25 lbs
 - Case is mounted and supported by 3 L brackets into the drywall
 - Single bracket weight capacity of 25 lbs
- Components of suspended units:
 - 4 I Beam Clamps
 - 4 threaded rods connected from clamp to structure
 - Structurally supports 100 lbs

Network System Enclosure


Enclosure Houses: FEDM Board Power Supply Power Distribution Board Oscillator GPS Board DE3 Board WiFi Board WiFi Board

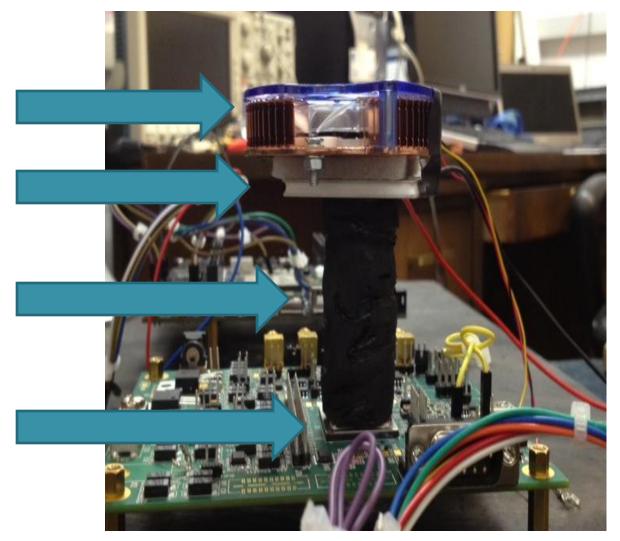
Network System Enclosure Cont...

- All enclosure mounted on birch wood base plate.
- Enclosed in plexi-glass housing
- Latched top for accessibility
- Suspended from I Beam in center of room components facing down

Cooling System

- Used Peltier method for the Stratix II chip provides continued isolated cooling
- Mounted from base plate to fan, held in low compression against chip
- Prevents overheating and system shut down and restart which occurs at 53° C
- Maintains operational temperature at I° C

Appendix B1


Cooling System Cont...

Copper Fin & Fan Heat Sink

Thermoelectric Cooler

Polyurethane insulated Copper rod

Stratix II chip

Budget

D. Expense	Quantity	Unit Price \$	Total \$
Equipment			
Structural Support	4	\$2.39	\$9.56
Beam Clamp 3/8" Threaded Rod 3/8"	4	8.89	35.56
Hex Nut Full 3/8" 100PK	i	6.28	6.28
Flat Washer 3/8" 100 PK	1	5.09	5.09
Cooling System			
Peltier Cooler	2	7.50	13.00
Heat Pipe	1	41.00	41.00
Fan	1	21.27	21.27
Enclosure			
Acrylic Cover	1	68.57	68.57
Birch Plywood Baseplate	1	9.99	9.99
Mounting Hardware	1	20.00	20.00
Power Supply Components			
Headers	7;1	2.50; 5.00	22.50
Power Distribution Boards		10	20
Connectors	3	n/a	15.00
Battery	2	65	130
Total Equipment Cost			210.32
Total Project Cost	-		\$439.09

Circuit Speed Testing

- The Classic Timing Analyzer Tool was used to test circuit speed
- Feature gives estimate running speed from current compiled data with current FEDM design

Classic Timing Analyzer Tool	
Registered Performance tpd tsu tco th C	Custom Delays
Clock:	
Value	
From To	
Clock period	
Frequency	
	100 125 150 75 175 50 200 25 0 MHz 250

Structural Support Testing

- Shelving Units tested in dry wall using 50lb weights
 - No failure
 - No bracket dislodgment from wall
 - Successful support testing

Enclosure Testing

- Supporting 2 lbs of hardware inverted
- Using deflection test
 - 80lb weight caused <4mm deflection

Cooling System Testing

- COMSOL rendering to support calculations.
- Successful system test of 2°C at operational speed of 353 MHz
- Slight condensation build up at thermo cooler contact point
 - Solution: Seal point of contact with small polyurethane ring

Sample Calculations <u>Appendix B</u> COMSOL Rendering <u>Appendix B2</u>

Complete System

- Complete system test at 353 MHz
 Have not reached 500 MHz yet
- Total system test proved successful
 - Stratix chip cooled to 2°C
 - Obtained small amount of data
 - No high cosmic activity at the time of testing

Questions?

Appendix A

Before:

Slow Corner Fmax for high-speed counter: 211.28MHz Logic Utilization: 24,314 / 27,104 (90%) = 2,790 remaining Dedicated logic registers used: 21,878 / 27,104 (81%) = 5,226 remaining M512 blocks: 193/202 (96%) = 9 remaining M4K blocks: 144/144 (100%) = 0 remaining M-RAM blocks: 1/1 (100%) = 0 remaining

• After:

Slow Corner Fmax for high-speed counter: 213.13 MHz (slightly better) Logic Utilization: 22,007 / 27,104 (81%) = 5,097 remaining (almost 2x better)

Dedicated logic registers used: 19,463 / 27,104 (67%) = 7,641 remaining M512 blocks: 188/202 (93%) = 24 remaining (more than 2x better)

M4K blocks: 144/144 (100%) = 0 remaining (same)

M-RAM blocks: 1/1 (100%) = 0 remaining (same)

<u>Back</u>

Appendix A I

State - Floating or Locked

Floating regions allow Quartus to determine the appropriate location of the block, while Locked uses a user defined location

Size - Auto or Fixed

Auto lets Quartus handle sizing while Fixed uses user defined sizing and shaping

Reserved - On/Ŏff -

Enabling allows Quartus to utilize resources from this region for entities not assigned to this region

Enforcement - Hard or Soft -

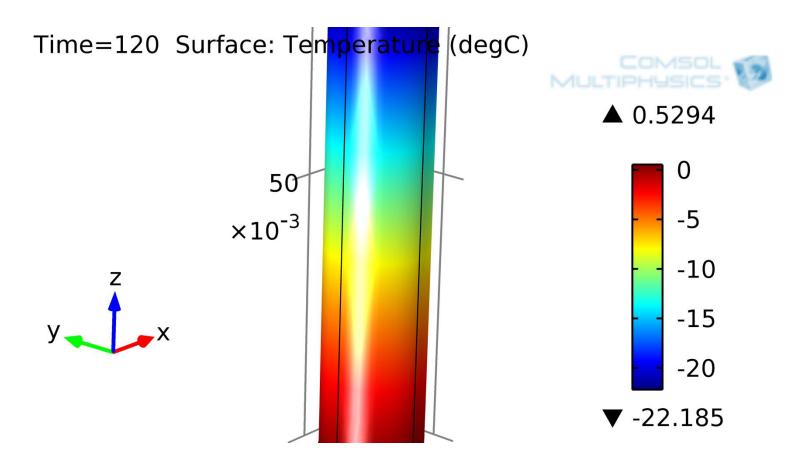
Soft enforcement allows deference of the region to timing constraints, allowing entities to leave region if performance is improved. Hard enforcement does not abide by the relocation of entities

Origin - Location on Floorplan -

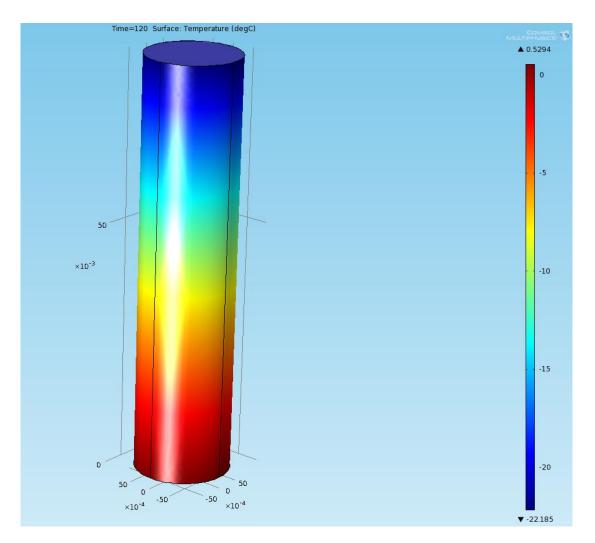
Defines the locations of the logic lock region

Back

Appendix B

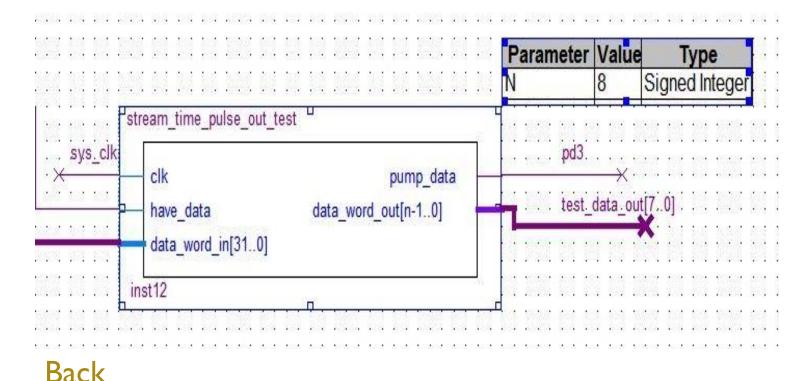

- Q=k*a*(Thot-Tcold)/d
- Established Heat Rate (from current system) Q= 126.563 W
- Cross Sectional Area a= 5cm²
- Desired Rod Length d= 8.4cm
- Thermal Conductivity of Copper k= 401 W/m*K
- Running Temperature (Thot) Thot= 53°C (326K)
- Desired Running Temp(Tcold) Tcold= 0°C (273K)

Back


Appendix BI

- Updated Specs With New Thermoelectric Cooler
- Q=40W
- =>Desired Rod Length d=3.3in
- COP= $T_C/(T_H-T_C)$
- EFF= $(T_H T_C)/T_C$
- Eff=9.05%
- COP=11.05

Appendix B2



Appendix B3

Appendix C

Timing Sync Module Used for Testing

Material Selection

Need To use plots from Ashby's textbook to find the best material

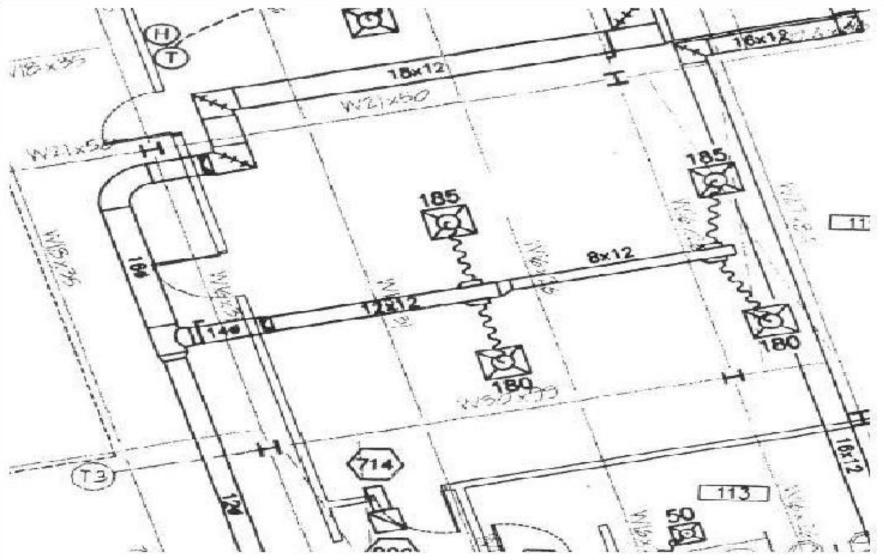
Material Index

Shows which guide lines to use

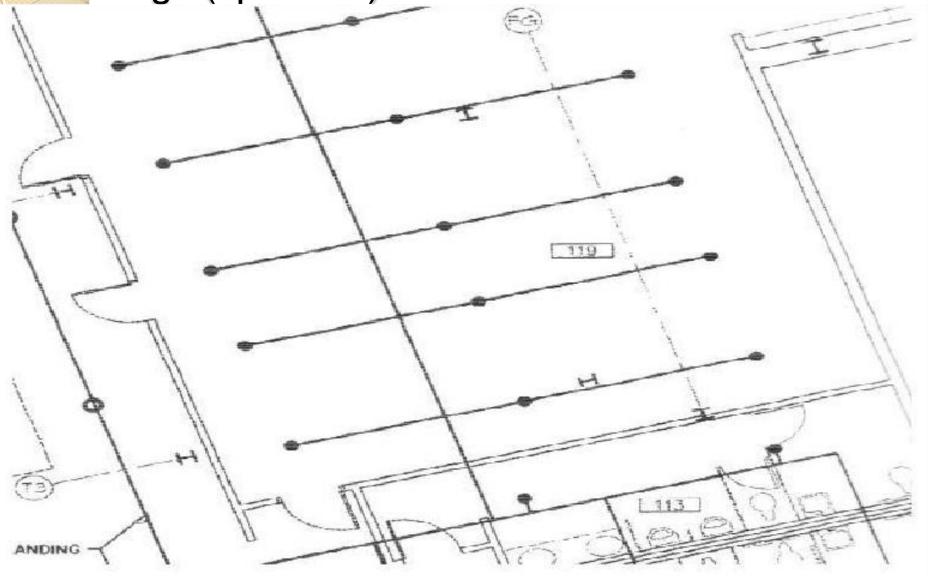
Gives an idea of which plots to use

Must use Modulus vs. Relative cost plot

Relative cost


Necessary to correct values and remove influence of inflation and units of currency

 $C_{v,r} = \frac{\frac{Cost_{material \, selection}}{kg} * Density \, of \, material \, selection}{\frac{Cost_{steel}}{kg}} * Density \, of \, mild \, steel \, rod$


Material Choice: References

- Aluminum Plate. Digital image. Made-in-china.com. Web. 29 Nov. 2011. <http://image.made-in- china.com/2f0j00bBpEIOzJZvuV/Fireproof-Aluminum-Plate.jpg>.
- Ashby, M. F. *Materials Selection in Mechanical Design*. Burlington, MA: Butterworth- Heinemann, 2011. Print.
- Baltic Birch Plywood. Digital image. Web. 29 Nov. 2011. <http://images.rockler.com/rockler/images/63388-01- 200.jpg>.
- "MDF Board FAQ Tutorial." *DIY Audio* & Video FAQs, Tutorials, and Calculators for Speaker Boxes, Crossovers, Filters, Wiring and More. Web. 29 Nov. 2011. ">http://www.diyaudioandvideo.com/FAQ/MDF/>.

Drawings (vent)

Drawings (sprinkler)

Drawings (iBeam)

Drawings (electrical)

