Concept Generation & Selection

EML 4551C - Senior Design - Fall 2011

Google Mobile App for Compressor Performance (GE)

Department of Mechanical Engineering, Florida State University, Tallahassee, FL

Project Advisors:

Todd Hopwood Industry Advisor, GE Dr. Taira Department of Mechanical Engineering Dr. Frank Department of Electrical and Computer Engineering Dr. Linda DeBrunner Department of Electrical and Computer Engineering

Compressor Performance Application

Majority of technical issues for a compressor are on flow, not achieving.

Looking to design a simple flow measurement system that could be externally mounted on the inlet/outlet pipe to the compressor, the sensor(s) would transmit the information back to a Android phone where data could be stored/plotted.

-As specified by Todd Hopwood (GE)

Design Product Specification

- 1. Data transferred through Wi-Fi or ? To an Android phone.
- 2. Setup time on the compressor less than 5 minutes, prefer 120 seconds or less.
- 3. No modifications allowed to the piping going to the package.
- 4. Software capturing data should be able to store the data and plot live.
- 5. Working Demo

As specified by Todd Hopwood (GE)

P-V Diagram

P-V Diagram

P-V Diagram

pv diagram eng.exe

Calculating Pressure in Pipe

• Total pressure defined as:

$$P_{total} = P_{static} + P_{dynamic}$$

• Static pressure:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Calculating Static Pressure

• Discharge Pressure (ideal):

$$P_2 = P_1 \frac{V_1}{V_2} \frac{T_2}{T_1}$$

- Where:
 - $-V_1/V_2$ = compression ratio
 - T_1 and T_2 are measured or assumed
 - P₁ is known

Static Pressure

- P₁ and P₂ are therefore the static pressures that will be used when modeling the P-V curve
- Assumptions
 - Known P₁
 - Ratio between P_{static} and $P_{dynamic}$ changes very little with a change in P_{total} in the range we are measuring

Dynamic Pressure Assumption

 So, any difference in our P-V curve from ideal case will be due solely to change in dynamic pressure:

$$P_{dynamic} = \frac{1}{2}\rho V^2$$

 Not a good assumption if very accurate measurement is needed, but likely good enough to detect a flow problem in a compressor

Pressure Drop in Pipe

• Pressure drop in pipe between valve and transducers:

$$\Delta p = f * \frac{L}{D} * \frac{1}{2}\rho V^2$$

• Where:

f = Darcy friction factor

- L = distance between valve and middle of transducers
- D = inner diameter of pipe
- ρ = density of the fluid
- V = measured velocity of the fluid in the pipe

Pressure Drop in Pipe

• Since we assume Laminar flow:

$$f = \frac{64}{Re}$$

• Reynold's Number:

$$Re = \frac{\rho VD}{\mu}$$

- μ = Dynamic viscosity of the fluid
- So, pressure drop resolves to:

$$\Delta p = \frac{32\mu LV}{D^2}$$

Calculating Cylinder Pressure

• Discharge:

$$P_{cyl} = P_2 + P_{measured} + \Delta p$$

$$P_{cyl} = P_2 + \frac{\rho V_{discharge}^2}{2} + \frac{32\mu L V_{discharge}}{D^2}$$

• Suction:

$$P_{cyl} = P_1 + P_{measured} - \Delta p$$
$$P_{cyl} = P_1 + \frac{\rho V_{suction}}{2} + \frac{32\mu L V_{suction}}{D^2}$$

Preliminary Pressure Calculator

- Demonstration of a pressure calculating algorithm
- For a single velocity value
 - Future iterations will send live output to our graphs

Co	mn	han	d٧	ñin	do																																-+1 [
¢	Ne	v to	M	TU	AB?	Wa	etd	h th	s <u>W</u>	deo	, 98	e (Den	105	, o	r ne	ad	<u>Ge</u>	ttin	93	tari	ted,																
fr,	P1	He	se	0, I	np	ut	F	ne lu	id	D	the	e si	Dy ty	na :	um i	ic	P	re	33	ur	e	an	d	Pr	cea	50	ire	L	055	C	alc	ula	ato)r-	-			

What Are Ultrasonic Transducers?

 Generate frequencies
 18 kHz and above by turning electrical signals into sound

- The rate these waves are slowed/reflected is dictated by the properties of the medium, including its motion
- This slowing can be calculated using several methods

Doppler Effect

- Ultrasonic waves exit the emitter and enter the fluid and are reflected off particulate matter into the receiver.
- Measures the speed
 of the particles
 www.EngineeringToolBox.com
- Not applicable to fluids with very small or no particulate ("clean liquids" or gasses)

Transit-Time Flow Concept

Transit-Time Flow Concept

 Ultrasonic waves exit the emitter of Trans. A and are reflected off the inflection Inflection Point Clamp

pt. into detector B.

 Signal is slowed based on fluid properties and velocity of flow

• Fluid will flow faster in the direction of the flow

Transit-Time Flow Concept

Where:

Vax = the axial liquid velocity along the acoustic path

- L = straight line distance between the centers of the faces of the upstream and downstream transducers
- Θ = the path angle of transmission relative to the fluid at rest
- tup = the upstream transit-time

tdown = the downstream transit-time

 $\Delta t = (t_{up} - t_{down}) = the differential transit-time$

Choice Methods of Deducing ΔT

- Cross Correlation
 - Find phase shift between two sine waves using signal reconstruction for cross correlation
 - Only requires two samples per waveform
 - Information is in the signal
- Signal Burst
 - Send out bursts of ultrasonic signal and timestamp when it is received
 - Information is in the timing

Cross Correlation Method

• The transit time is calculated by finding the phase shift between the original sine wave sent out and the sine wave received.

Cross Correlation Method

22

Cross Correlation Method

- Only need two samples per waveform to reconstruct signal
- Nyquist–Shannon sampling theorem
 - If a function contains
 frequencies of B hertz,
 it need only be sampled
 1/2B times per second
 to perfectly reconstruct
 the signal

Sampling Rate (Hz)

Some Information

Signal Burst Method

- Bursts of signal can be sent through transducers with the microprocessor waiting for input
- The % Error is inversely proportional to the number of times the microprocessor checks for new information per second.

Sample Freq. @ 150 kHz

Signal Burst Method

• Simple A/D converter

Signal Generation

- In order to generate a clean >100Khz signal, an external DAC may be needed
- Analog Devices Inc. carries a range of DAC's < \$20 that are capable of doing this

AD9761 \$10.16, Generates up to 30MHZ

Processing Using Cross Correlation

- 100Khz = Minimum frequency for an ultrasonic signal to properly penetrate a gas medium.
- The cross-correlation method requires us to reconstruct that >100Khz sine wave => our Analog to Digital converter must at least sample at 200Khz as per Nyquist Theorem.
- Floating point calculations required which a simple 8-bit microcontroller (i.e. Arduino), cannot do fast enough to have proper throughput.

TS-7800 SPC 500Mhz ARM9 CPU Built-in 2khz ADC

TS-ADC24 Add-on 2Mhz ADC

Processing Using Cross Correlation

 Signals will need to be sampled and reconstructed before being cross correlated.

• Current meters using this method can get up to 256 samples/second.

http://www.sierrainstruments.com/prnews/Sierra%20White%20Paper-%20Core%20Technology%20Ultrasonic.pdf

```
/* Calculate the mean of the two series x[], y[] */
 mx = 0;
my = 0;
for (i=0;i<n;i++) {
  mx += x[i];
  my += y[i];
mx /= n;
my /= n;
/* Calculate the denominator */
sx = 0:
sy = 0;
for (i=0;i<n;i++) {
  sx += (x[i] - mx) * (x[i] - mx);
  sy += (y[i] - my) * (y[i] - my);
}
denom = sqrt(sx*sy);
/* Calculate the correlation series */
 for (delay=-maxdelay;delay<maxdelay;delay++) {
  sxy = 0;
  for (i=0;i<n;i++) {
    i = i + delay;
    while (j < 0)
     j += n;
    j %= n;
    sxy += (x[i] - mx) * (y[j] - my);
  }
  r = sxy / denom;
  /* r is the correlation coefficient at "delay" */
}
```

http://paulbourke.net/miscellaneous/correlate/

Processing Using Signal Burst

- Time stamps are used, calculate the time it takes for a single burst to reach the receiver.
- Requires a much lower sampling rate => cheaper hardware can be used.
- May still consider getting a single-board PC for this method to allow for further expansion down the road.

Ardunio Uno

Communication To Phone

- 802.11 Direct Wi-Fi
 - Proper Wi-Fi module would need to be purchased and implemented.
 - Can setup Ad Hoc network in order to make MCU/SPC an access point.
 - ~100m range if no obstructions present.
 - 11Mbps Bandwidth.
 - Secured by WPA2.
- BlueTooth
 - Proper BlueTooth module would need to be purchased and installed.
 - ~10m range.
 - 800-1000Kbps Bandwidth
 - May present some security issues.

- Androidplot is a third party library which adds plotting functionality to the development framework.
- It's free and open source
- This is what will be graphing the data collected from the MCU/SPC

Compatibility

Android Version	Codename	API Level	Compatible
2.0.1	Donut	6	Yes
2.1	Eclair	7	Yes
2.2	Froyo	8	Yes
2.3.1	Gingerbread	9	Yes
2.3.3	Gingerbread	10	Yes
3.0	HoneyComb	11	Yes

- Storage Space limited by phone memory
- Solutions:
 - Delete old data
 - One element at a time or clear all
- Conserving memory:

- Save snapshot of graph and delete raw data
- Upload data/graphs to a server or email

Display

Goal is to use maximum screen space

Plotting in Real Time

- Limited by how quickly data can be obtained and stored into database
 - Bluetooth 800-1000kbps of data transfer
 - Wi-Fi to Wi-Fi about 11Mbps of data transfer
- Limited by devices processing speed to update graph (fps)

Real Time Sine Wave on

Emulator

Real Time Sine Wave on LG Optimus S

Mounting Systems

- Lubricating
- Attaching
- Locating

Setup Time Constraints

Pre-lubricated Sensors

Lubrication is used as an acoustic couplet

Figure 1: Exploded View

Figure 2: Assembled View

Velcro Bands

- Pros
 - Inexpensive
 - Readily available
 - Fits a wide range of pipes
- Cons
 - Temperature limits
 - Slippage
 - Not robust, for repeated usage

Figure 3: Velcro Belt

Quick Release Hose Clamps

Figure 4: Quick Release Hose Clamp

• Pros

- Inexpensive
- Readily available
- Fits a wide range of pipes
- Secure
- Cons
 - More Time Consuming

Interlocking Clamp

- Pros
 - Wont rust or Corrode
 - Fits a wide range of pipes
 - Secure
- Cons
 - Expensive (Custom Made)
 - More Time Consuming

Figure 5: Nylon Interlocking Clamp

Magnets

- Pros
 - Secure
 - Innovative
- Cons
 - Might effect sensor reading
 - Expensive
 - Not readily available

Figure 6: Round Magnet

Proper Placement

Figure 7: Slide Rule

- Sliding Measure
 - Similar to Slide Ruler
 - Ensures Proper location of the sensors
- Manual Measure with a Tape Measure

Cost Analysis

Sensors/DAC	Cost		
Ultrasonic Transducers	\$1,000		
DAC	\$20		
Single-Board PC		Microcontroller	
TS-7800	\$229		
WiFi interface	\$30	MCU	\$25
Battery pack	\$20	WiFi Shield	\$90
TS-ADC24	\$109	Battery pack	\$20
Subtotal	\$388	Subtotal	\$135
	Low	High	
Total	\$1,155	\$1408	

Questions?