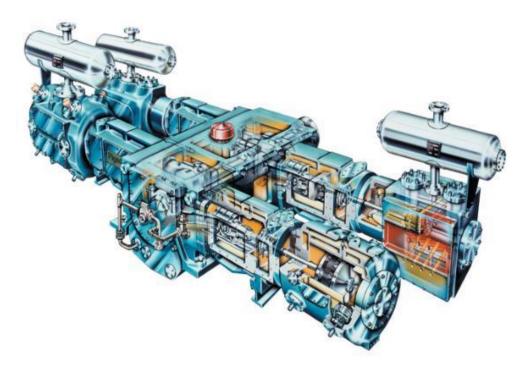
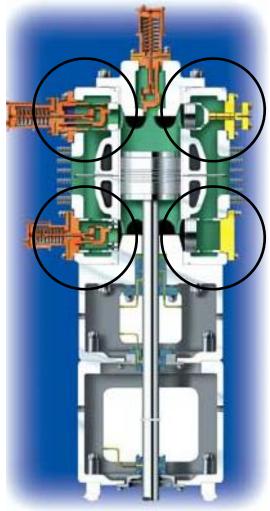
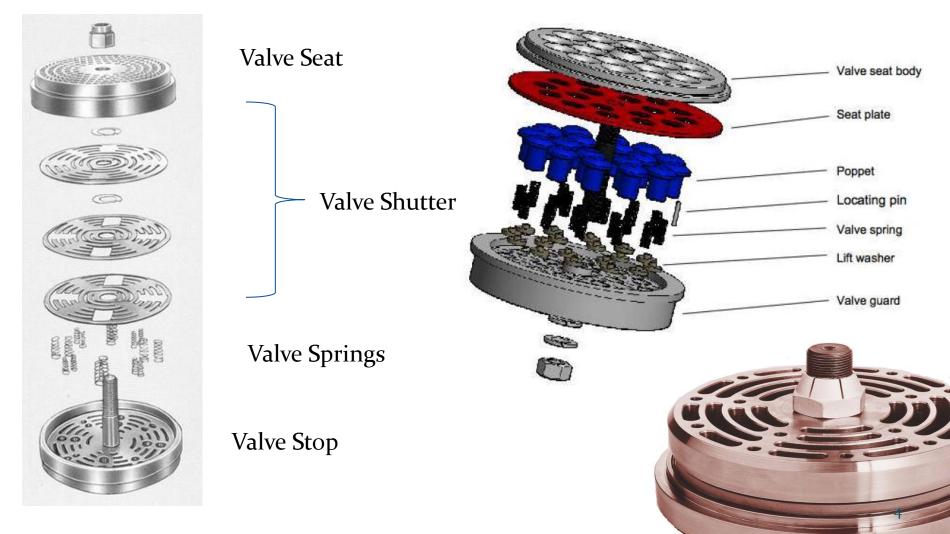
Rotational Compressor Valve Group 18: Alejandro Castro Sam Leuthold Andrew Borger


GE Sponsor: Todd Hopwood **Faculty Advisor**: Dr. Van Sciver


Overview

- Application
- Problem Statement
- Project Scope
- Final Design(Initial)
- Problems Encountered
- Final Design
- Current Progress
- Testing
- Potential Issues
- Modified Future Scope
- Summary

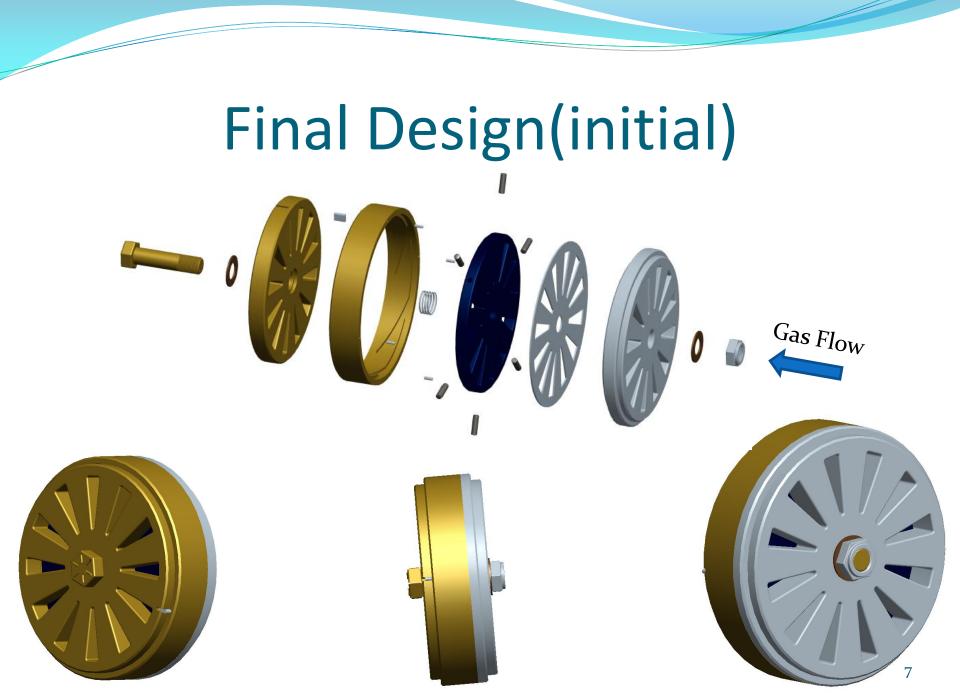
Application



Current Valves

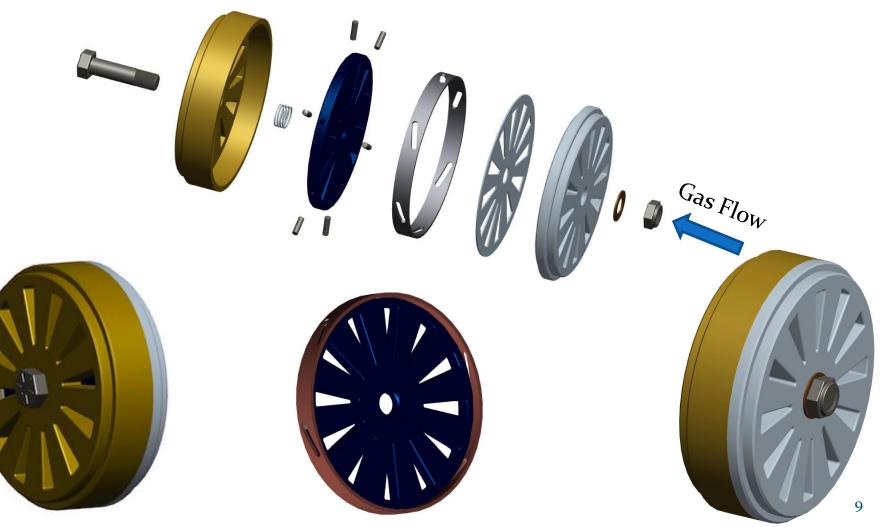
Plate Valves

Poppet Valves

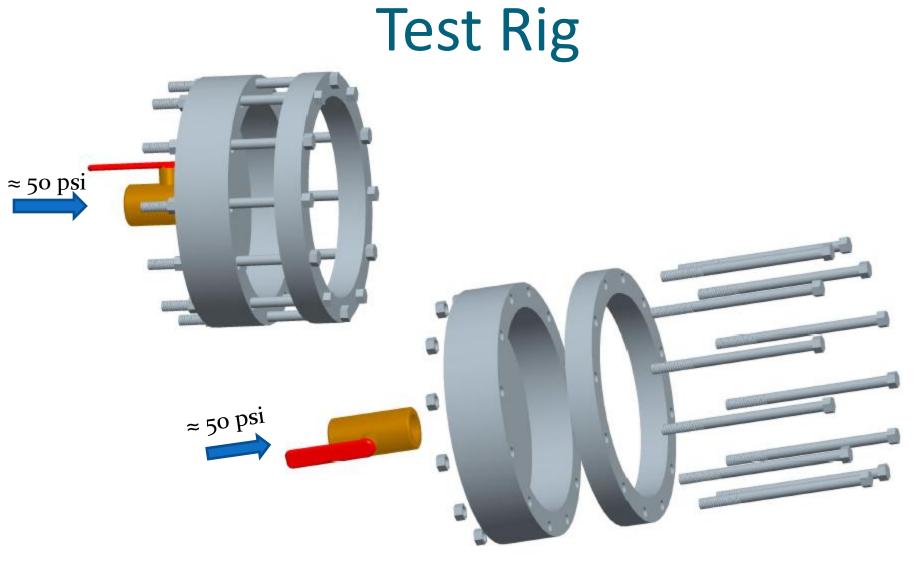

Problem Statement

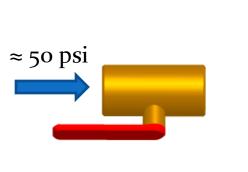
- Reciprocating compressors move large volumes of natural gas
- Current compressor valves are reliable but inefficient
- Inefficiencies caused from indirect flow path
- Project Goal: Obtain direct flow with a rotational type valve

Project Scope

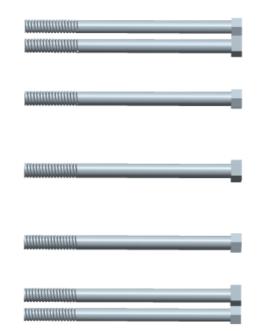

- Must operate in a rotational manner and obtain direct flow
- Operate at pressures between 30 psi and 600 psi
- Materials must be able to withstand temperatures approaching 350F
- Modifiable to fit all current gas compressors used by G.E.
- Is to be easily replaced
- \$2000 budget

Problems Encountered

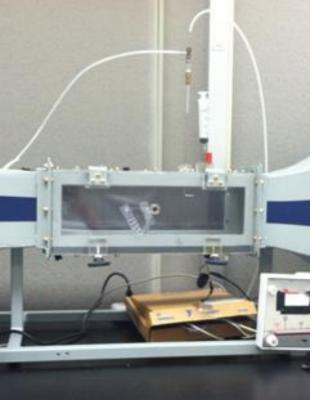

- Machining of the threads on the outer housing would have been overly complicated
- A separate threaded insert needed to be designed
- Thickness of back plate needed to be minimized to be easily milled
- Prototype materials have been changed from production materials due to cost



Current Progress(update)


- Final design changes have been made for ease of machining
- Valve machining in progress
- Materials for test rig in process of being ordered: \$438.43
- Materials for flow visualization have been ordered: \$243.67

Test Rig



Wind-Tunnel Smoke Wire Test

• A simplified acrylic model will allow flow visualization through entire valve

Potential Issues

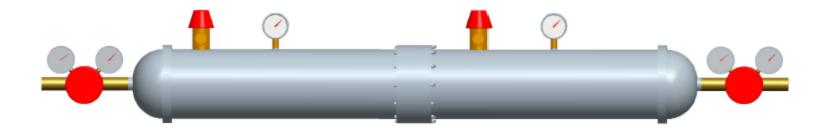
- Valve does not completely open
- Test conditions are not the same as operating conditions
- Thread and/or pin binding
- Machining tolerances

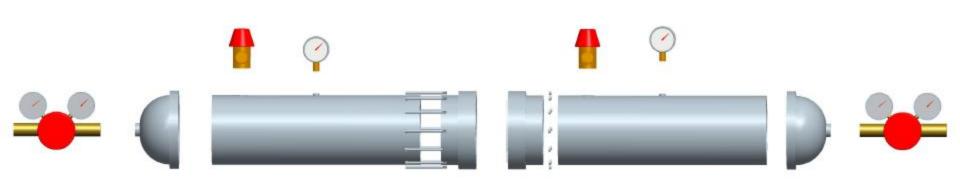
Future Scope

- Machining in progress
- Parts for test rig being ordered
- Testing will follow for the remainder of the semester
- During testing valve performance will be optimized
- Collaboration with team 19 not likely

	0	Task Name	Start	Duration	Finish	Predec	November 1		December 1		Ja	January 1		February 1		March 1		April 1	
	Ŭ						10/30	11/13	11/27	12/11	12/25	1/8	1/22	2/5	2/19	3/4	3/18	4/1	4/15
1		3-D Print Prototype	Mon 12/5/11	5 days	Fri 12/9/11				12/5	12/9									
2		Order Materials and Parts	Mon 1/9/12	4 days	Thu 1/12/12						1	/9 1/12							
3		Machine Parts	Mon 2/27/12	5 days	Fri 3/2/12										2/27	3/2			
4		Test Rig Design	Wed 1/18/12	34 days	Fri 3/2/12							1/18				3/2			
5		Test Rig Construction	Mon 3/5/12	6 days	Mon 3/12/12	4									3/5	5	3/12		
6		Testing	Fri 3/16/12	26 days	Fri 4/20/12	7,5										3/16	I		4/20
7		Valve Construction	Mon 3/5/12	5 days	Fri 3/9/12										3/5	5	ม		
8		Data Analysis/Redesign	Mon 3/19/12	25 days	Fri 4/20/12											3/*	19		4/20
9		Progess Report	Wed 1/4/12	79 days	Fri 4/20/12						1/4								4/20
10		Website Design	Wed 1/4/12	79 days	Fri 4/20/12						1/4								4/20
	4			1														15	

Summary


- 3-D prototype already implemented
- Design slightly changed for machining purposes
- Machining in progress
- Parts for test rig currently being ordered
- Total Budget: \$2000
- Total spent: \$879.86
- Project is running slightly behind accepted schedule due to machining difficulties


Questions

Bill of Materials

Part	Item #	Model #	Price	Source	Purpose
Kobalt 1/4" x 3/4" Air Hose Connector	172731	SGY-AIR34	\$3.98	Lowes	Test Rig
1" Threaded Ball Valve	101417	M1001	\$14.50	Lowes	Test Rig
1" x 18" Galvanized Pipe	24014	10617	\$9.57	Lowes	Test Rig
8 Gal Air Compressor	340271	HG300000DI	\$179.00	Lowes	Test Rig
Steel Plates 1" and 2" thick			\$200	Jackson Cook	Test Rig
3/8-16 x 5.5" Bolts	91257A	646	\$24.87	McMaster	Test Rig
3/8-16 Nuts	90499A	031	\$6.51	McMaster	Test Rig
Steel Plates .5",1" ,and 2" thick			\$197.76	Jackson Cook	Valve
Acrylic Plates			\$243.67	McMaster	Flow Test
		Total:	\$879.86		

Original Test Rig Design

Calculations Intake

Compression Ration:

R_c := 1.6342

Cylinder

Bore := 8.25in

Stroke := 6.0in

Volume :=
$$\pi \left(\frac{\text{Bore}}{2}\right)^2$$
·Stroke
Volume = $5.256 \times 10^{-3} \cdot \text{m}^3$

$$\boldsymbol{\omega} \coloneqq 1200 \text{rpm}$$
$$\boldsymbol{\omega} = 1.2 \times 10^{3} \cdot \text{rpm}$$
$$\text{time}_{in} \coloneqq \left(\frac{1}{\omega}\right) \cdot 0.5 \cdot 2 \cdot \pi$$

approximation

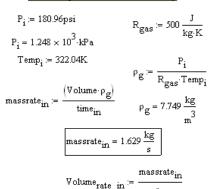
Valve
Area_{w_holes} :=
$$25.2773$$
in²
Area_{w_holes} = 0.016 m²

 $diam_{in hole} := 1.375in$

$$\begin{aligned} \text{Area}_{\text{wo_holes}} &\coloneqq \pi \cdot \left(\frac{\text{diam}_{\text{plate}}}{2}\right)^2 \\ \text{Area}_{\text{in_hole}} &\coloneqq \pi \cdot \left(\frac{\text{diam}_{\text{in_hole}}}{2}\right)^2 \\ \text{Area}_{\text{in_hole}} &= 9.58 \times 10^{-4} \text{ m}^2 \\ \text{Area}_{\text{wo_holes}} &= 0.024 \text{ m}^2 \end{aligned}$$

 $diam_{plate} := 6.9in$

$$Area_{allcuts} := Area_{wo_holes} - Area_{w_holes} + Area_{in_hole}$$


$$Area_{allcuts} = 8.774 \times 10^{-3} \text{ m}^2$$

$$Area_{percut} := \frac{Area_{allcuts}}{\text{Num_cuts}}$$

$$Num_cuts := 12$$

Area_{percut} =
$$7.312 \times 10^{-4} \text{ m}^2$$

Assuming 100% intake effeciency

$$-\rho_g$$

 $Volume_{rate_{in}} = 0.21 \frac{m^3}{s}$

Max Opening Force on Plate

 $F_{max} := (P_e)(Area_w holes)$

 $F_{max} = 33.251 \cdot kN$

This is done to analyze the most critical

if this valve were to be used on the most

ratio:

Exhaust

Assuming 100% exhaust Effeciency

Volume_{rate_out} := Vel_{out} Area_{allcuts}

assuming no back pressure and entire valve surface exposed.
This is done to analyze the most critical situation:

$$F_{max} := (P_e)(Area_{w_holes})$$

$$F_{max} = 33.251 \text{ kN}$$
Wolume_{rate_out} = 547.424 $\frac{m^3}{hr}$
if this valve were to be used on the most extreme compression

$$Volume_{rate_out} = 5.37 \cdot \frac{n^3}{s}$$

$$F_{max_e} := (P_{extreme})(Area_{w_holes}$$

$$F_{max_e} = 67.463 \cdot kN$$

P_{extreme} := 600psi