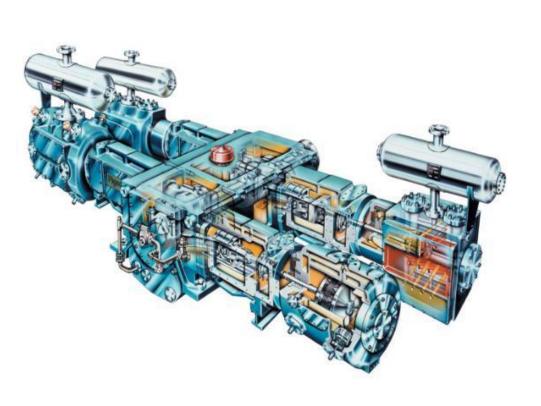
Rotational Compressor Valve

Group 18:

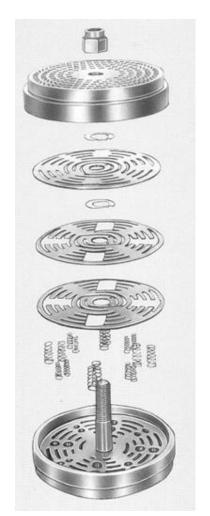
Alejandro Castro Sam Leuthold Andrew Borger


GE Sponsor: Todd Hopwood **Faculty Advisor**: Dr. Van Sciver


Overview

- Application
- Current Valves
- Problem Statement
- Project Scope
- Concept Selection
- Interim Designs
- Final Design Selection
- Final Design
- Current Progress
- Future Scope
- Summary

Application



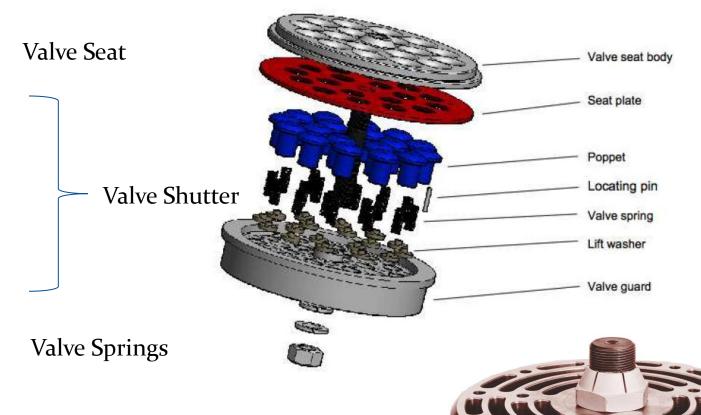

Current Valves

Plate Valves

Poppet Valves

Valve Stop

Problem Statement

- Reciprocating compressors move large volumes of natural gas
- Current compressor valves are reliable but <u>inefficient</u>
- Inefficiencies caused from indirect flow path
- Project Goal: Obtain direct flow with a rotational type valve

Project Scope

- Must operate in a rotational manner and obtain laminar flow
- Operate at pressures between 30 psi and 600 psi
- Materials must be able to withstand temperatures approaching 350F
- Modifiable to fit all current gas compressors used by G.E.
- Is to be easily replaced
- The valve is to outperform the volumetric flow rate of the current plate and poppet valve
- 2000\$ budget

Concept Selection

Impact Rating System

- 1 Unsatisfactory
- 2-Below average

Reliability (20%)

Flow Rate (25%)

Total (100%)

Ease of Construction (10%)

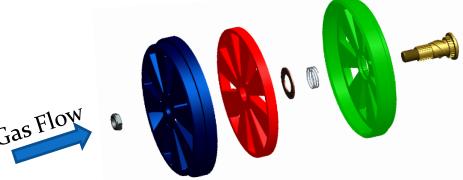
Ease of installation (25%)

Cost (20%)

- 3 Satisfactory
- 4-Good
- 5-Excellent

P Solenoid/Distributo	w Microprocessor	س Mechanical Linkage	→ Pressure(Partial Rotation)	Pressure(Full Rotation
4	3	3	3	5
3	3	2	5	5
3	4	2	3	3
3	3	3	5	5
5	5	5	4	4
3.7	3.6	3.2	4.15	4.55

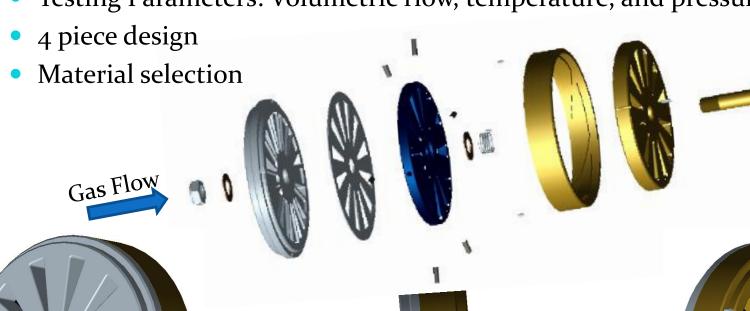
Interim Designs


Housing Pitch Rotation

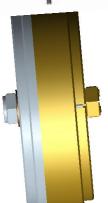
- Same basic concept as Design 1
- Threaded outside housing plate
- Simple retaining bolt

Inner Thread Rotation

- Fixed outer casing
- Rotating/translating center plate
- Splined and threaded center bolt
- Return spring

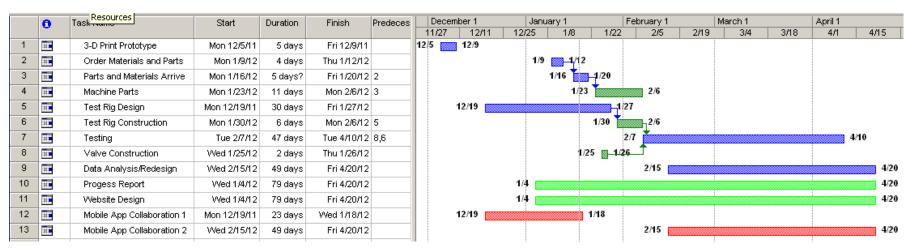


Final Design Selection


Criteria	Threaded Center Bolt	Threaded Housing
Chance for debris (15%)	3	4
Ease of machining / Tolerances (30%)	3	4
Pressure distribution on valve (15%)	2	5
Force on threads (15%)	2	4
Durability (25%)	2	4
Total:	2.45	4.15

Final Design

• Testing Parameters: Volumetric flow, temperature, and pressure



Current Progress

- Parts have been ordered and ready for pickup: 12"x 12"
 x 2", 12" x 12" x 1", 12" x 12" x ½" Steel plates
- Machinist contacted for machining advice
- Final Design changes have been made for ease of machining
- Test rig currently being designed

Future Scope

- Machining is to begin next week
- Test rig is to be constructed within machining time
- Rigorous testing will follow for the remainder of the semester
- During testing valve performance will be optimized

Summary

- 3-D prototype already implemented
- Design slightly changed for machining purposes
- Parts have been ordered
- Machining is to be started next week
- Test rig currently being designed
- Total Budget: \$2000
- Total spent: \$197.76
- Project is running within accepted schedule

