Rotational Compressor Valve Group 18: Alejandro Castro Sam Leuthold Andrew Borger

GE Sponsor: Todd Hopwood **Faculty Advisor**: Dr. Van Sciver

Overview

- Problem Statement
- Application
- Concept Selection
- Flow Calculations
- Concept Designs
- Force Calculations
- Material Selection
- Brief Cost Analysis
- Failure Mode Analysis
- Summary

Problem Statement

- Gas compressors are used to transport and store natural gas
- Current compressor valves are reliable but inefficient in flow
- A valve with a more direct flow is needed
- Obtain direct flow with a rotational type valve

Application

Application

Concept Selection

Impact Rating System 1 – Unsatisfactory 2 – Below average 3 – Satisfactory 4 – Good 5 – Excellent	Solenoid/Distributor	Microprocessor	Mechanical Linkage	Pressure(Partial Rotation)	Pressure(Full Rotation)
Reliability (20%)	4	3	3	3	5
Cost (20%)	3	3	2	5	5
Ease of Construction (10%)	3	4	2	3	3
Ease of installation (25%)	3	3	3	5	5
Flow Rate (25%)	5	5	5 4		4
Total (100%)	3.7	3.6	3.2	4.15	4.55

Flow Calculations(Time)

*Calculations based on ideal gas properties and instantaneous opening of valve

Flow Calculation(Inlet)

$P_{intaks} = 1247. kPa$	$P_{exhaust} = 2039kPa$
$T_{intaks} = 322.04K$	$T_{exhaust} = 380.65K$
Bore = 2.095m	Stroke = 0.1524m
$\forall = 2\pi R^2 \cdot h = 0.8645 m^2$	

$$\dot{m}_{in} = \frac{\forall * \rho}{t}$$
 Where, $\rho = (\frac{P}{R*T})$

Once mass flow rate is known:

 $\dot{m}_{in} = \dot{m}_{out}$

 \dot{m}_{in} = Mass rate into cylinder

∀= Volume of Cylinder

 ρ = density of incoming fluid

t= Time of mass flow(Estimated)

P= Suction Pressure

R= Gas Constant

T= Inlet Temperature

*Calculations based on ideal gas properties and instantaneous opening of valve

Flow Calculation(Exhaust)

$P_{intaks} = 1247. kPa$	$P_{exhaust} = 2039kPa$
$T_{intaks} = 322.04K$	$T_{exhaust} = 380.65K$
Bore = 2.095m	Stroke = 0.1524m
$\forall = 2\pi R^2 \cdot h = 0.8645 m^2$	

$$\dot{m}_{out} = \rho * A * V_{out}$$
 Where, $\rho = (\frac{P}{R*T})$

 ρ = density of outgoing fluid

P= Out going Pressure

R= Gas Constant

T= Outlet Temperature

A= Active Valve Area

 $V_{out} =$ Velocity of exiting gas

With the above information, V_{out} can be found. Then:

$$\dot{\forall}_{out} = V_{out} * A$$

*Calculations based on ideal gas properties and instantaneous opening of valve

Design 1: Inner-thread Rotation

Design 1: Thread Rotation

- Fixed outer casing
- Rotating/translating center plate
- Splined and threaded center bolt
- Return spring

Gas Flow

11

Design 1: Thread Rotation

Concept 1: Valve Operation

Design 2: Pitch Rotation

Design 2: Pitch Rotation

- Same basic concept as Design 1
- Threaded outside housing plate
- Simple retaining bolt

Design 2: Outer Pitch Rotation

it as: Defails toplete

16

Concept Comparison

Threaded Bolt

- Higher pitch angle
- Higher chance for debris
- Bolt difficult for machine
- Pressure difference across valve face
- Tighter tolerances

Threaded Housing

- Uniform force distribution
- Less force on threads
- Less chance for debris
- Ease of machining
- Pins may not be durable
- Low pitch angle

Force Calculation (Bottom Dead Center)

Force Calculation (Up Stroke)

Material Selection

- All materials must be resistant to temperatures of up to 350F
- Translating materials must be wear resistant due to required lifetime (6.3x10⁸ cycles)
- Sliding surfaces must also be low in friction (μ < 0.15)
- Valve is to be sealed to prevent leakage

Translating Material

- No lubrication
- Graphite in cast iron creates a natural lubrication
- Hardness
- Surface roughness
 - Threaded cast iron insert

Gasket Material

- Perfluoroelastomer (FFKM)
 - Rubber form of PTFE
 - High temperature stability up to 327°C (620°F)
 - Almost universal chemical resistance
 - Outstanding mechanical and chemical properties

Cost Analysis

- Raw cast iron(cylinder): \$5
- Raw cast iron (plate): \$120
- Spare parts: \$10
- Machining (College of Engineering): \$0
- Total: \$135

Failure Mode and Effects Analysis

 Procedure in product development to detect possible failures and score them on severity, occurrence, problem detection

Item/Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	Sev	Potential Cause(s)/Mech anism(s) of Failure	Occ	Current Design Controls	Det	RPN	Recommended Action(s)
Center bolt material, Gasket	Debris in shaft	Poor gas flow	6	Improper material selection, valve exceeding lifetime	5	Material extensively researched	7	210	Screen the valve, more research on proper gaskets and center bolt
Valve Plates/Spring/ Gaskets	Corrosion of Parts due to gas type	Gas leakage, excessive wear, valve failure	8	Incorrect material choice, excessive temperatures	4	None	6	192	Research all material choices
Center bolt and housing	Overall height of valve incorrect, Piston interference	scar piston, bend rod, valve damage	9	improper dimensions	2	following design parameters closely, check valve clearance with piston	2	36	Run clearance test prior to installation

Summary

- Concerns of complete open operation
 - Vary pitch angle
 - Adjust spring constant
 - Alter valve passage geometry
- Wear and Debris
 - Adjust tolerances
 - Material selection
- Operation Speed/Spring flutter
 - Avoid resonance

References

- http://www.eng.fsu.edu/~castral
- http://www.enginebuildermag.com/Article/1171/valve_selection_hot_valve_ma terials_for_hot_engines.aspx
- https://supportcentral.ge.com/products/sup_products.asp?prod_id=184232
- http://www.machinerylubrication.com/Read/775/reciprocating-compressor
- http://www.machinerylubrication.com/Read/1348/acid-lubricant-piston-rods
- http://www.electro-coatings.com/hard-chrome-wear-resistance.php
- http://www.prepol.com/Perlast.html

QUESTIONS