Critical Current Probe

Amy Eckerle Andrew Whittington Philip Witherspoon

Florida State University Department of Mechanical Engineering

NHMFL Applied Superconductivity Center

April 2012

Overview

- Introduction
 - Superconductivity
 - YBCO/BSCCO
- Project Overview
 - Objective
 - Constraints
- Design
 - Possible solutions
 - Selected solutions
- Final Design
 - 3D model
 - Manufacturing and assembly
- Results
 - Economics
 - Safety hazards
 - Testing Data
- Conclusions

Superconductivity/Critical Current

- Superconductivity allows current to flow indefinitely because of negligible or zero resistance.
- Critical current probes measure how much current a sample can take before it transitions to the normal state
 - Criteria

- Temperature
 - 4.2 Kelvin, 77 Kelvin
- Magnetic Field
 - For test constant field

Superconducting Materials

- YBCO is used in project
 - Yttrium Barium Copper Oxide
 - HTS (High Temperature Superconductor, 77K)
 - Таре
- Samples made of BSCCO
 - (Bismuth Strontium Calcium Copper Oxygen)
 - HTS
 - Wire
- Samples are mounted at the base of two current leads that run the length of the probe
- Submerged in cryogenic liquid

http://www.magnet.fsu.edu/

The Project

• Design a critical current probe to test superconducting samples at cryogenic temperatures.

Objectives

• Save Helium

- \$5 per liter
- Currently uses 100-120 liters a run
- Weekly tests = \$26,000
- Durability
 - Used weekly over many years
- Test 6-8 short samples per test
 - Reduce number of tests
- Able to test one spiral sample per run
- Deliver 1000 A to the samples
- Reduce Weight

Possible Solutions

Ways to Reduce Helium Consumption

- Heat Exchanger
 - Using He Vapor to cool top of leads
- HTS Leads and support
 - Remove copper leads from He bath
- Number of Leads
 - optimization
- Fins

- Over length of vapor cooled leads
- Gas Insulation
- Jacket Design

Concepts	He Savings per test (L)	Practical	Accepted
Heat Exchanger		Impractical	no
HTS Lead and Support	≤ 26%	Modified	yes
Number of Leads	≤ 22%	Yes	Yes
Fins	9%	Impractical	no
Gas Insulation		Impractical	no
Jacket Design	.2%	Modified	yes

Jacket Design

HTS Leads and support

•YBCO Low thermal conductivity with

high electrical conductivity

- Prevents copper leads from entering liquid helium bath
- Used standard heat conduction equation for temperature profile

$$Q_{cond} = \frac{A}{L} \int_{4K}^{T} k(T) dT$$

HTS Leads and support

How many strips of YBCO are needed to make a lead?

• HTS lead needs to carry 1kA

- I_c dependent on temperature and applied field
- 5 strips needed to conduct 1kA at 9T and 30K
- For factor of safety, 1kA needs to be 60% of I_c
- 8 leads are needed to make one lead

Optimization of leads

• Leads are major heat leak

- Static heat load from high thermal conductivity
- Previous probe needed 10 leads for 8 samples
- Able to test 8 samples with 6

Final Design – Current Leads

Current Connects

Final Design - HTS

Final Design - Sample Holder

Final Design

Manufacturing and Assembly

5

1

• Assembly

- 1. Top flange/Angle brackets
- 2. Stainless steel jacket
- 3. Spacer
- 4. Copper leads
- 5. Current connects
- 6. G10 connector
- 7. Sample holder
- 8. Soldering of HTS leads
- 9. HTS support system
- **10. Voltage taps**
- 11. G-10 Jacket
- 12. Guidance cap

Soldering of HTS Leads

- Special device was created to solder 8 HTS tapes together
 - Measure and control temperature precisely
- Soldering to copper leads using various heating methods

Aluminum heater blocks

Cartridge Heaters

Environmental/Safety Hazards

- G-10
- Flux
- Cutting Fluid
- Machining Hazards
- Heating Hazards
- Handling Liquid Helium
- Electric Current
- Weight
- All members went through Safety training - lab and shop

G-10

Economics

• Budget of \$4000

material	quantity	cost
110 Alloy Copper rods	6	\$291.00
G-10	1	\$952.63
Stainless steel plate	1	\$81.49
90deg angles steel	1	\$44.06
Sockets threaded, current connects	6	\$180.00
copper	1	\$126.47
aluminum bar	1	\$49.34
cartridge heater	9	\$287.76
wing nut	1	\$11.21
compression springs	2	\$26.72
Exotic Machining	1	\$400.00
YBCO (19 meters)	1	\$1,235.00
	Total	\$3,682.68

Testing

- Took place at the NHMFL
- Lifted by crane into cryogenic bath
- Preliminary testing
 - To make sure HTS Lead was superconducting
 - Liquid Nitrogen (77K)
- Final testing in liquid Helium to measure burn off (4.2K)

Liquid Nitrogen Test

 Preliminary test in liquid nitrogen (77K)

- Test if the leads were superconducting
- Possible current sharing
- Met the requirements to be used at 4.2 K

Liquid Helium Test

- Helium test in 4.2 K
 - Current sharing was confirmed
 - O or negligible heat is produced by HTS leads
 - Many tests confirm no degradation

Lead #1 Full Tap (350mm) - Helium

Helium Consumption

New Probe	Existing Probe
0.35 liters/min	0.83 liters/min
53 liters in 130 min segment of test	108.3 liters in 130 min segment of test
\$265	\$542

Amount of Helium in Cryostat

- 51% helium saved
- Savings of \$277 per test
- \$14,404 saved per year

Conclusions

- Probe reduces helium consumption compared to existing probe
 - Reduce thermal conduction
- New technology was developed to save helium
 - HTS leads
- Probe will be used on a weekly basis for an estimated 2-3 years

Acknowledgments

- Dr. Hovsapian, Adjunct Faculty, Florida State University, Mechanical Engineering, Ph.D.
- Dr. Kosaraju, Adjunct Faculty and Postdoctoral Researcher
- Dr. Hellstrom, Ph.D. Materials Science, Stanford University,
- Dr. Trociewitz, Associate Scholar/Scientist, ASC
- Applied Superconductivity Center
- NHMFL
- Bill Sheppard, NHMFL Machine Shop
- Robert Stanton, NHMFL
- Bill Starch, ASC Machine Shop
- Dimitri Argonaut, ASC Machine shop

References

- Çengel, Yunus A., Robert H. Turner, and John M. Cimbala. *Fundamentals of Thermal-fluid Sciences*. Boston: McGraw-Hill, 2008. Print.
- Ekin, Jack W. . *Experimental Techniques for Low-temperature Measurements*. New York: Oxford UP, 2006. Print.
- Thomas, Lindon C. *Fundamentals of Heat Transfer*. Englewood Cliff, NJ: Prentice-Hall, 1980. Print.

Questions?

Project Plan

ID	•	Task Name	Duration	Start	Finish	February 2012	March 2012	April 2012
1	•	Construction	50 days?	Mon 2/6/12	Eri 4/13/12	31 3 6 9 12 15 18 21 24 2	7 1 4 7 10 13 16 19 22 25 28	31 3 6 9 12 15
2	-	Machining	15 daye2	Mon 2/6/12	Eri 2/24/12			•
		Machining	F days:	Mon 2/0/12	5-204040			
3		S.S. top plate	o days r	Mon 2/0/12	FH 2/10/12			
4		G-10 top flange	4 days?	Fri 2/10/12	Wed 2/15/12			
5		Spacers	4 days?	Fri 2/10/12	Wed 2/15/12			
6		Jacket Welding	4 days	Fri 2/10/12	Wed 2/15/12			
7		Guide	4 days?	Fri 2/10/12	Wed 2/15/12			
8		Sample Holder - G10	5 days?	Mon 2/13/12	Fri 2/17/12			
9		Square spacer	5 days?	Mon 2/13/12	Fri 2/17/12			
10		Copper Rods	8 days?	Mon 2/13/12	Wed 2/22/12			
11		Sample Holder - Copper	5 days?	Mon 2/20/12	Fri 2/24/12			
12		Current Connects	5 days?	Mon 2/20/12	Fri 2/24/12			
13		Assembly	13 days?	Wed 2/22/12	Fri 3/9/12			
14		G10 flange	3 days?	Wed 2/22/12	Fri 2/24/12			
15		Top spacers	3 days?	W ed 2/22/12	Fri 2/24/12			
16		Connecting spacer	3 days?	Fri 2/24/12	Tue 2/28/12			
17		Stainless steel tube	3 days?	Fri 2/24/12	Tue 2/28/12			
18		Sample Holder	4 days?	Fri 2/24/12	Wed 2/29/12			
19		Square spacer	4 days?	Fri 2/24/12	Wed 2/29/12			
20		Solder HTS Leads	3 days?	Wed 2/29/12	F ri 3/2/12			
21		HTS Support system	2 days?	Fri 3/2/12	Mon 3/5/12			
22		G10 Jacket	3 days?	Mon 3/5/12	Wed 3/7/12			
23		Copper to Current connects	3 days?	Wed 3/7/12	Fri 3/9/12			
24		Testing	26 days?	Fri 3/9/12	Fri 4/13/12			
25		Dewar Testing	16 days?	Fri 3/9/12	Fri 3/30/12			
26		Results	10 days?	Mon 4/2/12	Fri 4/13/12			

Manufacturing and Assembly

- Machining
 - ASC shop
 - NHMFL shop
 - Exotic Machining, Inc

- Assembly
 - Top flange
 - Stainless steel tube
 - Spacer
 - Copper leads
 - Current connects
 - G10 connector
 - Sample holder
 - Soldering of HTS leads
 - HTS support system
 - Voltage taps

Sample Holder

Sample Holder

Sample #	Corresponding Label	Lead #s
1	A, 1	4, 3
2	B, 2	4, 2
3	C, 3	1, 3
4	D, 4	1, 2

Sample Design

Sample #	Corresponding Label	Lead #s
5	E, 5	4,6
6	F, 6	4, 5
7	G, 7	1, 6
8	H, 8	1, 5

Critical Current

- Critical current probes measure how much current a sample can take before it becomes non-superconducting
 - Temperature
 - 4.2 Kelvin, 77 Kelvin
 - Magnetic Field