Group 5 Enhanced Agility of MAV's Using Adaptive Structures

Joey Alessandria Mitch Jermyn Joshua Webb

Overview

- Introduction
- Background
- Design Concept
- Testing
- Cost Analysis
- Future Work

Introduction

Motivation:

- Unmanned Aerial Vehicle (UAV) operating limitations
- Project Focus:
- Implementation and Testing of adaptive structures in Micro-Air Vehicle (MAV)

Figure 1

Introduction

- Project Specifications:
- Compatible with test equipment
- Reconfigurable
- Operating Range: $Re < 10^{5}$
- Largest Airfoil Dimension: \leq 20 cm

Introduction: Previous Work

Dr. Dickinson and Dr. Oates summer 2010

- Elliptical Membrane Wing
- Dielectric Elastomer VHB 4910

Background

- Dielectric Elastomer
 - Two Electrodes
 - $_{\circ}$ Membrane

Design Concept

Figure 6

Design Concept: Elliptical Wing

Ellipse

- Major Axis: 20cm
- Minor Axis: 10cm
- 1/16" thickness

Material:

• Al 6061

Figure 7: Elliptical Wing

Design Concept: Frame Connector

Minimal Affect on Flow

Press Fit

Zero Deflection

Material:

• Al 6061

Figure 8: Elliptical Wing

Design Concept: Sting Connector

Non Conductive

- Rigid
- Material:
- Delrin

Figure 9: Sting balance connector

Design Concept: Wing Membrane

Materials:

- High strength bonding (VHB) tape
- Carbon Grease

Preparation:

• 300% Strain

Figure 10: VHB Tape 4910

Testing

Electrode Configuration

- Leading Edge
- Roll
- Force Measurement
- Flow Visualization

Electrode Configuration: Leading Edge

Vary Electrode Thickness

- 0.4 in
- $\circ~$ 0.8 in
- 1.2 in

Focus:

- Increase Lift
- Increase Critical Attack Angle

Electrode Configuration: Roll

Vary Electrode Thickness

- 1.32 in
- 2.64 in
- 3.96 in
- Focus:
- Viability

Figure 12: Electrode Placement

Testing: Force Measurement

REEF testing facilities

- Low speed wind Tunnel
- Sting Balance
- Test Parameters:
- Wind Tunnel Velocity
- Angle of Attack
- Applied Voltage

Figure 13: Sting Balance

Testing: Flow Visualization

FCAAP testing facilities

- Low speed wind Tunnel
- Smoke Wire
- Test Parameters:
- Wind Tunnel Velocity
- Angle of Attack
- Applied Voltage

Wind Tunnel Test

Figure 14

Cost Analysis

Part	Material	Vendor	QTY.	Part Cost	Total cost
Frame Connector	Aluminum	eMachineShop.com	1	\$30.00	\$30.00
Elliptical Frame	Aluminum	eMachineShop.com	1	\$60.00	\$60.00
Sting Connector	Sting Connector	McMaster-Carr	1	\$7.20	\$7.20
Actuating Material	3M-VHB	McMaster-Carr	2	\$28.32	\$56.64
Electrode	Carbon Grease	Circuit Specialists	1	\$12.40	\$12.40
Electrical Wiring	Small Gauge Electrical Wire	Hardware World	1	\$6.78	\$6.78
Cutting	X-Acto Knife with Blades	Amazon	1	\$8.84	\$8.84
Transportation	Gasoline	Gas Station	40	\$2.79	\$111.60
	Total Cost				\$293.46

Future Plans

Fall

- Schedule time at Eglin's REEF facilities
- Order Parts
- Smoke Wire Scheduling

Spring

- Prototyping
- Testing

References

Hays Michael, Jeff Morton, Ben Dickinson, and William Oates. "Aerodynamic Control of Micro Air Vehicle Wings."

Figure 1: http://www.skilluminati.com/research/entry/there_is_only_one_war_and_it_is_a_class_war/

Figure 15: http://www.sugawara-labs.co.jp/bigimages/smoke_b.jpg

Acknowledgements

Dr. Ben Dickinson Dr. William Oates Graduate Student Michael Hays

