Analysis of MASM-0001.ipt

Author:	Bobby
Analysis Created:	Thursday, March 22, 2007 4:22:45 AM
Analysis Last Modified:	Thursday, March 22, 2007 4:22:45 AM
Report Created:	Thursday, March 22, 2007 4:25:21 AM
Database:	C:\Documents and Settings\Bobby\Desktop\BSME\2007 Spring\Sr.Design\inventor_files\real_deal_v10\MASM- 0001.ipa
Software:	Autodesk Inventor Professional 11.0 ANSYS Technology

Introduction

Autodesk Inventor Professional Stress Analysis was used to simulate the behavior of a mechanical part under structural loading conditions. ANSYS technology generated the results presented in this report.

Do not accept or reject a design based solely on the data presented in this report. Evaluate designs by considering this information in conjunction with experimental test data and the practical experience of design engineers and analysts. A quality approach to engineering design usually mandates physical testing as the final means of validating structural integrity to a measured precision.

Additional information on AIP Stress Analysis and ANSYS products for Autodesk Inventor is available at <u>http://www.ansys.com/autodesk</u>.

Geometry and Mesh

The Relevance setting listed below controlled the fineness of the mesh used in this analysis. For reference, a setting of -100 produces a coarse mesh, fast solutions and results that may include significant uncertainty. A setting of +100 generates a fine mesh, longer solution times and the least uncertainty in results. Zero is the default Relevance setting.

TABLE 1 MASM-0001.ipt Statistics			
Bounding Box Dimensions	5.75 in 0.6241 in 5.99 in		
Part Mass	1.907 lbm		
Part Volume	19.46 in ³		
Mesh Relevance Setting	0		
Nodes	14164		
Elements	8710		

Bounding box dimensions represent lengths in the global X, Y and Z directions.

Material Data

The following material behavior assumptions apply to this analysis:

- Linear stress is directly proportional to strain.
- Constant all properties temperature-independent.
- Homogeneous properties do not change throughout the volume of the part.
- Isotropic material properties are identical in all directions.

TABLE 2 Aluminum-6061				
Young's Modulus	9.993e+006 psi			
Poisson's Ratio	0.33			
Mass Density	9.798e-002 lbm/in ³			
Tensile Yield Strength	3.989e+004 psi			
Tensile Ultimate Strength	4.496e+004 psi			

Loads and Constraints

The following loads and constraints act on specific regions of the part. Regions were defined by selecting surfaces, cylinders, edges or vertices.

0. lbf -8.333 lb 0. lbf
0. in 0. in 0. in

	TABLE 3	
Load and	Constraint	Definitions

TABLE 4 Constraint Reactions				
Name	Force	Vector	Moment	Moment Vector
Fixed Constraint 1	8.332 lbf	-5.992e-009 lbf 8.332 lbf 1.398e-008 lbf	2.377 lbf·in	2.114 lbf∙in -5.395e-008 lbf∙in -1.087 lbf∙in

Note: vector data corresponds to global X, Y and Z components.

Results

The table below lists all structural results generated by the analysis. The following section provides figures showing each result contoured over the surface of the part.

Safety factor was calculated by using the maximum equivalent stress failure theory for ductile materials. The stress limit was specified by the tensile yield strength of the material.

Structural Results				
Name	Minimum	Maximum		
Equivalent Stress	4.025e-002 psi	54.62 psi		
Maximum Principal Stress	-5.658 psi	55.85 psi		
Minimum Principal Stress	-34.52 psi	6.532 psi		
Deformation	0. in	9.352e-006 in		
Safety Factor	15.	N/A		

TABLE 5

Figures

FIGURE 2 Maximum Principal Stress

FIGURE 3 Minimum Principal Stress

FIGURE 4 Deformation

FIGURE 5 Safety Factor

