Reusable RF Electrodes

Design Review 5 Team 314 Abbott Laboratories 03/25/22

1

Team Members

Brooke Bielski (BME) *Financial Advisor*

Adam Chebali (CpE) Computer Engineer Carolina Hau Loo (EE & CpE) Design and Testing Engineer Tariq Hopkins (EE) Lead Electrical Engineer Shannon Kelley (BME) *Lead Biomedical Engineer*

Joshua Mechler (EE) *Project Manager*

Sponsor & Advisor

- Sponsor: Abbott Laboratories
- Medical Device Company
- Contact: Bryan Burnett

- Advisor: Dr. Rajendra Arora
- Professor: ECE Department
- Specialty: RF and Electromagnetic Fields

Outline

- Brief Overview (5)
- Problem Statement (6)
- Final Concept (7)
- Current Work (8)
- Stress Testing (10)
- Mechanical Stress Testing (11)
- Mechanical Stress Data (12)
- Future Work (13)
- Summary (14)

Figure 1. Product Development [1]

Brief Overview

RF Ablation:

- Radiofrequency ablation is a common procedure for relieving pain.
- It greatly benefits people suffering from chronic pain.

How it works:

• Electric current heats up nerve tissue and stops it from sending pain signals.

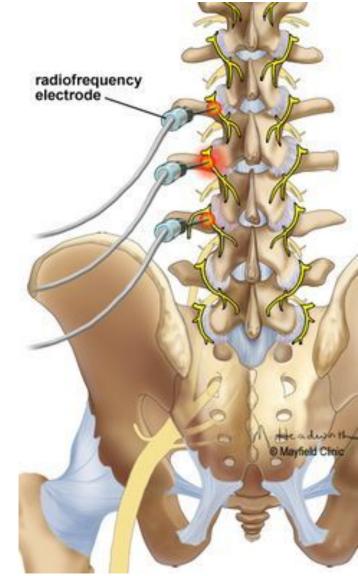


Figure 2. RF Ablation Therapy [2]

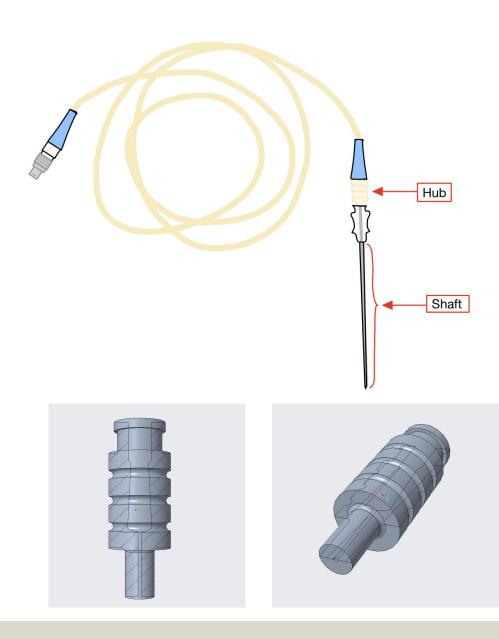
Problem Statement

Project Scope:

• Improve Reusability

Customer Needs:

- 1. Biocompatible Materials
- 2. Withstand at least 100 uses
- 3. Propagate RF signals (2 Hz 460 kHz)
- 4. Measures temperature


- 5. Repeated sterilization
- 6. Repeated procedure stress
- 7. Production cost less than \$200

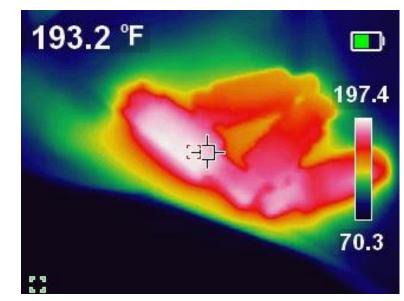
8. Pass FDA approval

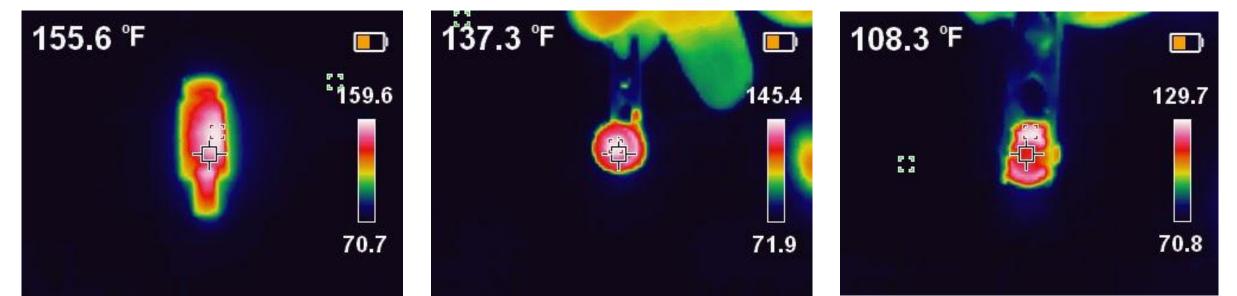
Final Concept

- 304 Stainless Steel shaft
 - + Biocompatible
 - + Cost effective
 - + RF propagation
- PPSU (Polyphenylsulfone) Hub material
 - + Virtually unlimited steam sterilization (>1000)
 - + Better chemical resistance than PET
 - + Biocompatible
 - + Already in use in the medical field
 - Higher Cost

Current Work

- Completed Chemical Enzyme (Medline Dual Enzymatic Detergent) and Autoclave cycling
- Mechanical Stress Testing



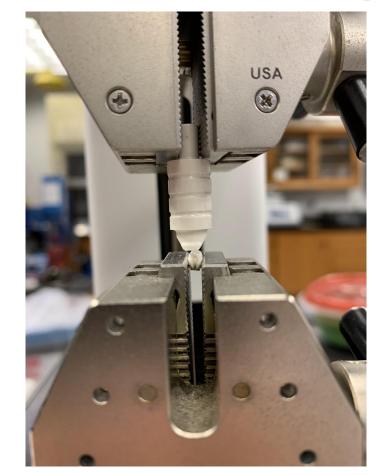


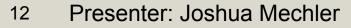
Current Work

- Thermal Camera (Klein Tools TI250)
- Areas of higher temperature in the hub
- Hypothesize that epoxy holds heat longer

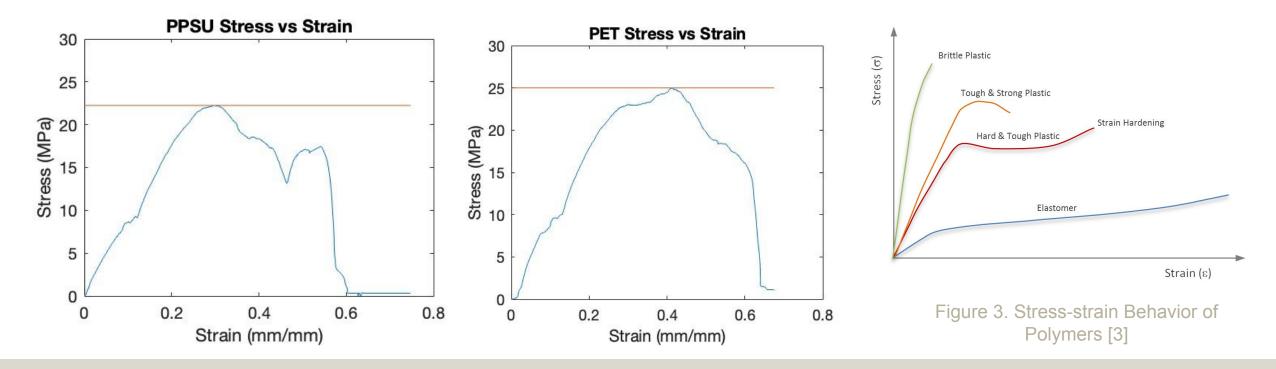
Stress Testing

- Autoclave Sterilization
 - Chemical Enzyme (30 mins)
 - Sterilization cycle at 132°C (4 ~ mins)
 - 5 15 cycles
- Mechanical Stress Testing
 - Force Test Stand (MARK-10 model ESM301)
 - Software: MESUR® Lite by MARK-10


MARK - 1D, Acquisition Settings						
7-	1				MESOR	
L	.oad			_		PROPER COLLEGE
	5.66				Units Total Readings	
,	Reading	Load	Time [sec	1		4930
I	1	1.14	0	-		Power L
	2	2.04	0.051		Acquiring Data 🕘	ENTER -
	3	2.94	0.101			DATA D
	4	3.8	0.152			
	5	4.64	0.205		START	
	6	5.04	0.25		and the second se	Model BG5
	7	4.82	0.303	=		
	8	4.86	0.352	1		WWW.WORL
	9	4.74	0.402			
	10	4.96	0.456		STOP	
	11	5.32	0.501			
	12	5.52	0.554			
	13	5.78 5.9	0.602			
	14	5.86	0.651			
	15	5.7	0.701			
	10	5.58	0.732			
J	18	5.44	0.851	-		


930E0007358

Mechanical Stress Testing



Mechanical Stress Data

- Cross-sectional area taken at thinnest diameter of the device (for stress calculation)
- Strain rate 2 mm/min

Future Work

- Continue *modified* mechanical stress testing
- Perform final data analysis
- Prepare for Design Day

Figure 4. Business Handshake Collaboration [4]

Summary

- Sponsor: Abbott Laboratories
- Product: Reusable RF Electrode
- Use: RF ablation for chronic pain
- Prototyping
- Quality Assurance Tests
- Future Plans

Acknowledgements

- Dr. Rajendra Arora (Project Advisor)
- Bryan Burnett (Abbott)
- Dr. Arce (BME SD Professor)
- Dr. Chuy (ECE SD Professor)
- Dr. Naroozi (ECE SD Professor)
- Dr. Hooker (ECE Professor)
- Hebert Lopez (ECE SD TA)
- Emily Hubicki (BME Lab Manager)

Figure 5. Problem solving techniques [5]

References

[1] "Create your own product development roadmap", *MindManager Blog*, 2021. [Online]. Available: https://blog.mindmanager.com/blog/2021/05/13/product-development-roadmap/. [Accessed: 05- Nov- 2021].

[2] "Radiofrequency ablation for pain", *Mayfield Clinic*, 2018. [Online]. Available: https://mayfieldclinic.com/pe-rf_ablation.htm

[3] "Stress-Strain Behavior of Polymers", Polymer Data Base. [Online]. Available: https://polymerdatabase.com/polymer%20physics/Stress-Strain%20Behavior.html

[4] "Business handshake virtual collaboration vector image" [Online]. Available: https://cdn5.vectorstock.com/i/thumb-large/04/14/business-handshake-virtual-collaboration-vector-37640414 .jpg

[5] C. Board, "Brainstorming techniques: 15 templates to try in 2021: Conceptboard Blog," Conceptboard, 04-Jun-2021. [Online]. Available: https://conceptboard.com/blog/brainstorming-techniques-templates/. [Accessed: 08-Nov-2021].

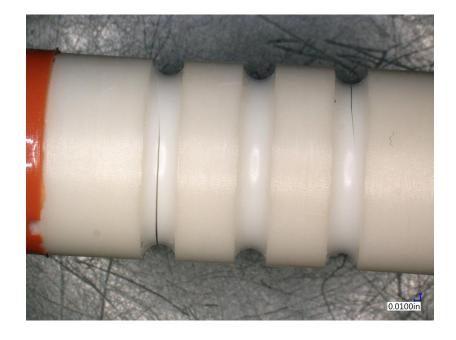
[6] *Pixabay*, 2021. [Online]. Available:

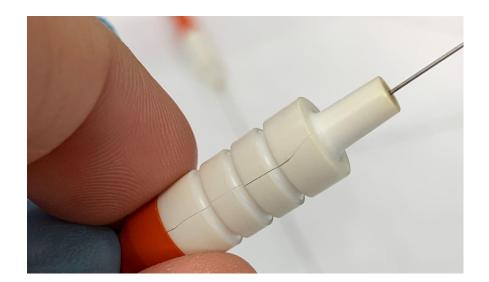
https://pixabay.com/illustrations/question-mark-question-response-1019820/. [Accessed: 08- Nov- 2021].

Questions?

Figure 6. Customer Insight [6]

Mechanical Stress Data (extra)


- Raw data from MESUR® Lite given in Load (N) and Time (sec)
- Strain rate is 2 mm/min


Strain = (2[mm/min] * Time[sec]/60) / (total length [mm])

Stress = Force[N] * area[mm^2]

For area, we took the smallest diameter (4[mm]) of the prototype as our cross-sectional area diameter.

Broken Hubs

