Reusable RF Electrodes

Virtual Design Review 2 Team 314 Abbott 11/12/21

1

Team Members

Brooke Bielski (BME) *Financial Advisor* Adam Chebali (CpE) Computer Engineer

Carolina Hau Loo (EE & CpE) Design Engineer Tariq Hopkins (EE) *Lead* Electrical Engineer Shannon Kelley (BME) *Lead Biomedical Engineer* Joshua Mechler (EE) *Project Manager*

Sponsor & Advisor

- Sponsor: Abbott Laboratories
- Medical Device Company
- Contact: Bryan Burnett

- Advisor: Dr. Rajendra Arora
- Professor: ECE Department
- Specialty: RF and Electromagnetic Fields

Outline

- Brief Overview (5)
- Problem Statement (6)
- Targets (7)
- Metrics (8)
- Concept generation (9)
- Concept selection (10)
- Final Concept (12)
- Future Plans (13)
- Summary (14)

Figure 1. Product Development [1]

Brief Overview

RF Ablation:

- Radiofrequency ablation is a common procedure for relieving pain.
- It greatly benefits people suffering from chronic pain.

How it works:

• Electric current heats up nerve tissue and stops it from sending pain signals.

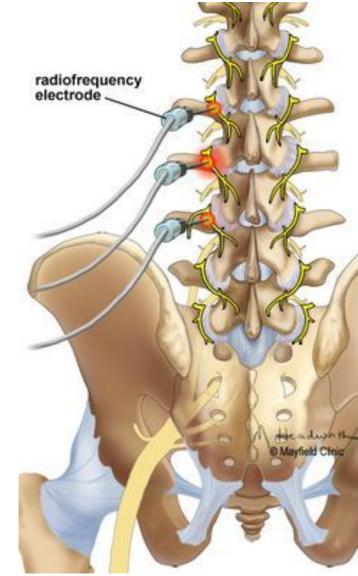


Figure 2. RF Ablation Therapy [2]

Problem Statement

Project Scope:

• Improve Reusability

Customer Needs:

- 1. Biocompatible Materials
- 2. Withstand at least 100 uses
- 3. Propagate RF signals (2 Hz 460 kHz)
- 4. Measures temperature

- 5. Repeated sterilization
- 6. Repeated procedure stress
- 7. Production cost less than \$200

8. Pass FDA approval

Targets

- Signals from 2 Hz to 460 kHz can be transmitted
- Voltage ranges between 1.845 V and 7.2 V
- Thermal energy between 50 110
 degrees C
- Range of temperature between 50 degrees C and 110 degrees C

Figure 3. Target [3]

Metrics

- Signal is successfully transmitted from the RF generator to the tissue
- Voltage is successfully transmitted from the RF generator to the tissue
- RF signal is converted into thermal energy when the tissue heats up
- Reads in the tissue temperature

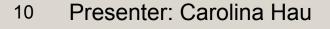
Figure 4. Metrics [4]

Concept Generation

- Generated 108 possible concepts using a morphological chart
- High Fidelity Concepts:
 - Shaft: 304 SS; Hub: PESU
 - Shaft: 304 SS; Hub: PCT
 - Shaft: 304 SS; Hub: PSU

Durability of Materials						
Shaft Material (12)	Hub Material (9)					
304 Stainless Steel	Polyethersulfone (PESU)					
316 Stainless Steel	Polycyclohexylenedimethylene Terephthalate (PCT)					
Tungsten	Polysulfone (PSU)					
308 Stainless Steel	Polyaryletherketones (PAEK)					
309 Stainless Steel	Polyetherimide (PEI)					
310 Stainless Steel	Syndiotactic Polystyrene (SPS)					
321 Stainless Steel	Polyphenylsulfone (PPSU)					
330 Stainless Steel	Polyphenylene Sulfide (PPS)					
403 Stainless Steel	Polyphthalamide (PPA)					
420 Stainless Steel						
422 Stainless steel						
442 Stainless Steel						

Concept Selection


Analytical Hierarchy Process (AHP)

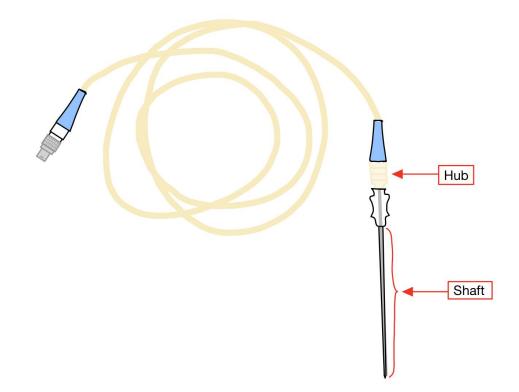
- Shows and quantifies the relationship of the customer needs.
- Final result will rank each customer need based on priority/importance.

		Biocompatible materials	Propagate RF Signals (2Hz - 465kHz)	Measure temperature	Withstand repeated sterilization	Final production cost of \$200	FDA approval	Geometric Mean	Normalized Weight
1	Biocompatible materials	1	6/5	3/2	3	6	2	2.004	0.29
2	Propagate RF Signals (2Hz - 465kHz)	5/6	1	5/4	5/2	5	5/3	1.670	0.24
3	Measure temperature	2/3	12/30	1	2	4	4/3	1.336	0.19
4	Withstand repeated sterilization	1/3	2/5	1/2	1	2	2/3	0.668	0.10
5	Final production cost of \$200	1/6	1/5	1/4	1/2	1	1/3	0.334	0.05
6	FDA approval	1/2	3/5	3/4	3/2	3	1	1.002	0.14

Normalized Weight = $\frac{Geometric\ Mean}{Sum\ of\ all\ Means}$

Concept Selection

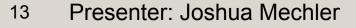
Pugh Chart


 Use of customer needs, weighted by the AHP decision matrix, to determine the viability of each of our high-fidelity concepts

	W	Baseline (PET With 304 Stanless Steel)	PESU (Polyethersulfone) With 304 Stainless Steel	PPSU (Polyphenylensulfone) With 304 Stainless Steel	PSU (Polysulfone) With 304 Stainless Steel
Biocompatable Materials	6	-	0	0	0
Propogate RF Signals	5	-	0	0	0
Measure Temp	4	-	0	0	0
Withstand Repeated Sterilizations	2	-	+1	+1	+1
Final Cost ≤ \$200	1	-	-1	+1	+1
FDA Approval	3	-	0	0	0
Score		-	0.05	0.15	0.15
Continue?		NO	NO	YES	YES

Final Concept

- 304 Stainless Steel shaft
 - ± Material currently in use
- PPSU (Polyphenylsulfone) Hub material
 - + Virtually unlimited steam sterilization
 - + Better chemical resistance than PET
 - + Biocompatible
 - + Already in use in the medical field
 - Higher Cost



Future Plans

- Finalize NDA
 - Acquire current schematics
- Begin developing prototype
 - Manufacture small batch
- Start testing of prototype
 - Determine if PPSU is the right material for the job.

Figure 5. Brainstorming

Summary

- Sponsor: Abbott Laboratories
- Product: Reusable RF Electrode
- Use: RF ablation for chronic pain
- Targets and Metrics
- Concept Generation
- Concept Selection
- Final Concept

Acknowledgements

- Dr. Rajendra Arora (Project Advisor)
- Bryan Burnett (Abbott)
- Dr. Arce (BME SD Professor)
- Dr. Chuy (ECE SD Professor)
- Dr. Hooker (ECE Professor)
- Dr. Naroozi (ECE SD SD Professor)
- Hebert Lopez (ECE SD TA)

Figure 7. Problem solving techniques

References

[1] "Create your own product development roadmap", *MindManager Blog*, 2021. [Online]. Available: https://blog.mindmanager.com/blog/2021/05/13/product-development-roadmap/. [Accessed: 05- Nov- 2021].

[2] "Radiofrequency ablation for pain", *Mayfield Clinic*, 2018. [Online]. Available: https://mayfieldclinic.com/pe-rf_ablation.htm

[3] P. S. M. C. Authorship, P. S. Media, and S. B. G. Head, "Companies won't reach their science-based targets without suppliers on board," Greenbiz. [Online]. Available: https://www.greenbiz.com/article/companies-wont-reach-their-science-based-targets-without-suppliers-boar d. [Accessed: 08-Nov-2021].

[4] "An introductory guide to project management metrics," Wrike. [Online]. Available: https://www.wrike.com/blog/what-are-project-management-performance-metrics/. [Accessed: 08-Nov-2021].

[5] C. Board, "Brainstorming techniques: 15 templates to try in 2021: Conceptboard Blog," Conceptboard, 04-Jun-2021. [Online]. Available: https://conceptboard.com/blog/brainstorming-techniques-templates/. [Accessed: 08-Nov-2021].

[6] *Pixabay*, 2021. [Online]. Available:

https://pixabay.com/illustrations/question-mark-question-response-1019820/. [Accessed: 08- Nov- 2021].

Questions?

Figure 8. Customer Insight

