

FPGA Enhanced Digital Beamsteering Phased Array

Team 311 Sponsor: L3Harris November 12th, 2021

Team Introductions

Katheryn Potemken Financial Advisor / FPGA Lead

Tiernen Pan Team Lead / Software Engineer

Christian Balos Software Lead

William Snyder Hardware Engineer

Andrew Cayson Hardware Lead

Sponsor, Advisors, and Assisting Instructor

Assisting Instructor: Dr. Arigong

Advisor:
Dr. Uwe Meyer-Baese

Customer: Dr. Hooker

Sponsor: L3Harris

Outline

- Motivation
- Project Scope
- Targets
- Concept Generation
- Concept Selection
- Preliminary Design

Motivation

- With new emerging technologies there is more need for higher data transmissions.
 - Beam steering deliver higher signal quality to your receiver
 - Faster information transfer and fewer errors
 - Does not need an increase transmitting power
 - Attenuation of side lobes

Project Scope

Project description

FPGA controlled transmitting antenna array.

Key Goal

Control a digital signal to control the radiation direction of the array using beam steering.

Market

Radar, sonar, wireless communication

Customer Needs

- FPGA Controlled 0-360 degree range
- Steer the direction of radiation (Beam-Steering)
- Transmitter will operate in the ISM band with
 <30 dBm output power into the antenna
- Array will be linear and consist of four antennas

Requirements

- Algorithm to control and maintain the optimum radiation beam position
- Operating Frequency within ISM Band
- 4 Channel DDS/Antenna Array
- Measure Phase Difference and dB Gain

Functions

- Relate the phase difference to the desired angle of the beam
- Generate four digital sine waves with each one having 'n' magnitude
- Convert digital signals to analog signals
- Amplify the signals to the proper frequency using an amplifier
- Generate the radiation pattern
 - Done by Feeding the amplified signals into the antennas in the correct order

Targets

- Anticipated Parts List with inputs and outputs
- Key components of the entire system are the GUI, FPGA, Up-Converter and DDS

Module	Computer Interface GUI
Inputs	120V AC power
Outputs	USB interface with FPGA
Module	FPGA
Inputs	USB interface, 12V dc
Outputs	1.8V, 3.3V dc
Module	Up-Converter
Inputs	4 analog sine wave patterns at 200.3MHz a piece
Outputs	4 analog sine wave patterns at 2.4GHz
Module	DDS X4
Inputs	1.8V, 3.3V dc
Outputs	4 analog sine wave patterns with phase offset, 200.3 MHz (Highest the DDS can output)

Concept Generation

High Fidelity Concepts:

- Pre-built 4-Channel DDS (no PCB required)
- FPGA and MCU based
- Operation Frequency Band is 2.4 2.5 GHz
- 120V 60Hz Power Supply
- 7-segment Display and LCD Display

Concept Selection

Finalized Selected Concepts:

- Digital Antenna Array
- FPGA and MCU
- Handheld size
- USB Power Supply

Computer Interface (GUI)

We will be using a laptop:

- Quartus for FPGA
 - o VHDL
- Code Composer Studio (CCS) for MCU
 - C

FPGA & MCU

MSP430FR5994 LaunchPad

BOOSTXL-EDUMKII Educational BoosterPack MKII

DE1 SoC Cyclone V FPGA

Four-Channel DDS

Up Converter

Antenna

Preliminary Design

-PVC Junction box

- -Mounting Brackets
- -Made for electrical

components

-Booster Pack for control

Presentation Recap

- Motivation
- Project Scope
- Targets
- Concept Generation
- Concept Selection
- Preliminary Design

References

- C. Fulton, M. Yeary, D. Thompson, J. Lake, A. Mitchell, "Digital Phased Arrays: Challenges and Opportunities," Proceedings of the IEEE, vol. 104, pp. 487-503, March 2016.
- https://www.youtube.com/watch?v=A1n5Hhwtz78
- https://www.youtube.com/watch?v=P-8-v M7TWM
- https://www.youtube.com/watch?v=HKpQP8H4JRc
- https://www.youtube.com/watch?v=n8 iSL4xKj8

Questions?

CHARTS

House of Quality Requirements **Technical** Output Frequency Quality of FPGA Gain of Antenna Microcontroller Dimensions **Targets** Weight Customer D B **Priority or** Weight + + + Easy to use + ++ ++ Low Power Inexpensive Assessment/ Competitive Evaluation Customer Compact ++ ++ Customer Accurate ++ Fast ++ ++ + + ++ **User Friendly** 120 V 6 Hz 8x6x4 inches Various I/O <\$2000 50 MHz 2.4GHz <10Lb Range **Targets**

Technical Assessment

Correlations:

- ++ Strong Positive
- **Positive**
- **Strong Negative**
- Negative

Relationships:

- •• Strongest= 10
- Strong= 7
- Fair= 4
- Weak= 1

Analytical Hierarchy Process (AHP)

	Ease of Use	Compactness	Weight	Accuracy	Speed	Mean	Weights
						$\sqrt[n]{\prod a_i}$	
Ease of Use	1	3	5	1/7	1/5	0.844	0.103
Compactness	1/3	1	3	1/7	1/7	0.46	0.056
Weight	1/5	1/3	1	1/9	1/7	0.254	0.031
Accuracy	7	7	9	1	3	4.21	0.515
Speed	5	7	7	1/3	1	2.412	0.295

Pugh Chart

		Digital Antenna Array	Digitized Antenna Array	Analog Antenna Array
Ease of Use	0.103	-	0	-1
Compactness	0.056	-	0	-1
Weight	0.031	-	-1	-1
Speed	0.295	-	0	0
Accuracy	0.515	-	-1	-1
Score		0	-0.546	-0.705