

Digital Beamsteering Phased Array

Team 311 Sponsor: L3Harris April 7th, 2022

Team Introductions

Katheryn Potemken Antenna Lead

Tiernen Pan Team Lead / Software Engineer

Christian Balos Software Engineer

William Snyder Hardware Engineer

Andrew Cayson Hardware Lead

Sponsor, Advisors, and Assisting Instructor

Assisting Instructor: Dr. Arigong

Advisor:
Dr. Uwe Meyer-Baese

Customer: Dr. Hooker

Sponsor: L3Harris

Outline

- Project Background
- Design Components
 - Software Design
 - PCB Design
 - System Design
- System Results
 - Intermediate Testing
 - Hardware Assembly
 - Final Testing

What is Beam Steering?

- What is Beam Steering?
 - Beam Steering is the usage of phase shifting within an antenna array to control the direction of the main lobe
 - This main lobe consists of each antenna's output constructively interfering with one another
- Why do we need Beam Steering?
 - The motivation for beam steering is the need for higher data transmission rates
 - Higher quality signal to receivers, with less errors

Market

- Civilian
 - 5G communications
 - Satellite to Ground
 Communications
- Military
 - Improving speed and range of Radar Systems

Project Specifications

- Operate at 2.4 GHz, which is within the ISM band
- Project parts include:
 - Upconverters
 - 4 Antennas
 - FPGA
 - Direct Digital Synthesis (DDS)
 - o PCB
 - Voltage Controlled Oscillators
 - Amplifiers

FPGA Interface

- Push Buttons and 1 switch
- HEX display

Button Press Component

Adjuster Component

Implementing the Beamsteering

Equation

$$d = \frac{\lambda}{2} \qquad \qquad \phi = \frac{2\pi}{\lambda} d \times \sin(\theta)$$

$$\phi = \frac{2\pi \lambda}{\lambda} \times \sin(\theta) \to \phi = \pi \times \sin(\theta)$$

Taylor Series to Implement the Sine Function

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}$$

Beamsteering Equation Component

DDS Encoder Block

• Has a resolution of 0.02197 *degrees*

$$\circ$$
 0 = 0, 1 = 0.02197, 10 = 2 x 0.02197, 11 = 3 x 0.02197

SPI block

Full Block Diagram

System Design

- Buttons on the Cyclone V serve as inputs for the array's desired beam angle
- The FPGA communicates with the DDS via SPI
- The DDS converts the signal from Digital to Analog and adjusts the phase as necessary.
- Finally, the analog signal will be upconverted to 2.4 GHz and will be transmitted via antenna.

Components Design

- AD9959 generates a 200.5 MHz signal and adjusts the phase difference on each of the four channels.
- Each channel contains an oscillator, upconverter, and amplifier.
- Amplifier output is connected to 2.4 GHz patch antenna.
- Oscillator generates a 2.2 GHz signal and mixes with the 200.5 MHz signal to create the 2.4 GHz signal.

$$\cos(2.2 \times 10^9) \cdot \cos(200.5 \times 10^6) = \frac{1}{2} (\cos(2.45 \times 10^9) + \cos(2.05 \times 10^9))$$

PCB Design

- RF Traces are **0.562mm** thick for 50Ω line impedance
- Antennas placed $\lambda/2 = 62.5$ mm apart
- Vias in grid placed $\lambda/20 = 6.25$ mm apart
- Vias along traces placed $\lambda/60 = 2.08$ mm apart

Intermediate Testing - Antenna

- Soldered two antennas to PCB cutouts
 - Two different solder jobs
 - Better quality solder job leads to greater antenna efficiency
- At 2.4 GHz, return loss is
 -11.41 dB

Intermediate Testing - Components

- Connected it to the DDS and powered the system through a breadboard
 - Measured output power through microwave analyzer
 - Two signals appeared
- At 2.45 GHz, out power is -47dBm
- SPECs are met for frequency but not power

AD9959 Direct Digital Synthesis

- Changes For Final Design
 - Power supply
 - No USB
 - Manual Mode
 - FPGA Wired to LogicInput and Output
 - Crystal Oscillator

DDS Test Results

Evaluation Software

Frequency Analysis

Hardware Assembly

Main PCB: Antenna Array

Test PCB:

Microscope View:

ELECTRICAL ENGINEERING

Final Testing

- Final testing
 - o Dr. Arigong's Lab
 - Series of receivers

Presentation Recap

- Project Background
- Design Components
 - Software Design
 - PCB Design
 - System Design
- System Results
 - Intermediate Testing
 - Hardware Assembly
 - Final Testing

References

Datasheets:

- https://www.mouser.com/datasheet/2/256/MAX2750-MAX2752-15124
 50.pdf
- https://www.mouser.com/datasheet/2/256/MAX2660-MAX2673-15153 97.pdf
- https://www.mouser.com/datasheet/2/777/GRRF S A0010122589 1-2 575831.pdf
- https://www.mouser.com/datasheet/2/238/LNNC S A0009494921 1-2 551007.pdf

Questions?