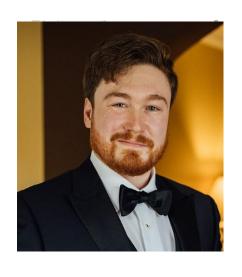


# Digital Beamsteering Phased Array

Team 311 Sponsor: L3Harris February 11th, 2022


#### **Team Introductions**











Katheryn Potemken Financial Advisor / Webmaster

Tiernen Pan Team Lead / Software Engineer

Christian Balos Software Engineer

William Snyder Hardware Engineer

Andrew Cayson Hardware Lead

## Sponsor, Advisors, and Assisting Instructor



Assisting Instructor: Dr. Arigong



Advisor:
Dr. Uwe Meyer-Baese



Customer: Dr. Hooker



Sponsor: L3Harris

#### **Outline**

- Previous Project Development
  - Choosing the design
  - Block diagram
  - components
- Current Progress Update
  - Team Assignments
  - VHDL coding implementations
  - PCB design
- Future Work
  - Microcontroller?
  - Future VHDL code

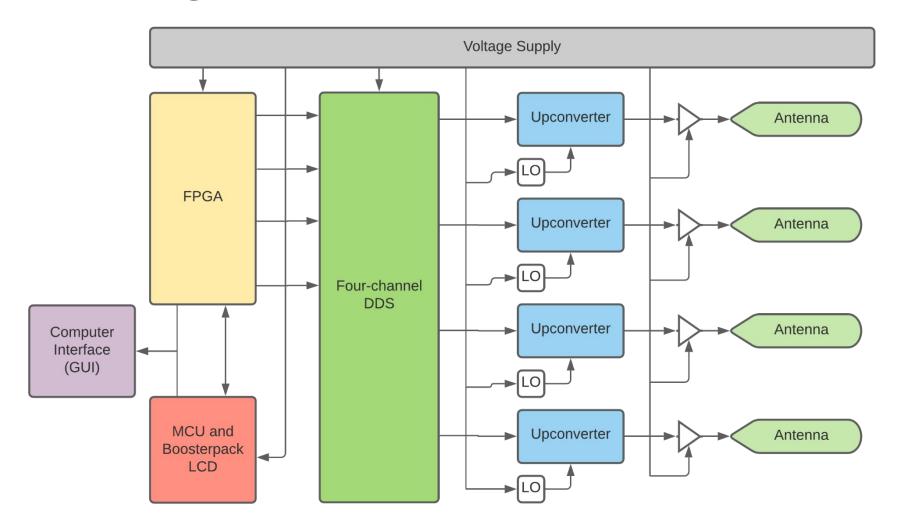


### **Modulating Roles**

- Tiernen Pan:
  - VHDL software lead
- Christian Balos:
  - VHDL software integrator
- Billy Snyder:
  - PCB Designer
- Katheryn Potemken:
  - Webmaster and Antenna Lead
- Andrew Cayson:
  - Hardware Lead and Microcontroller Design

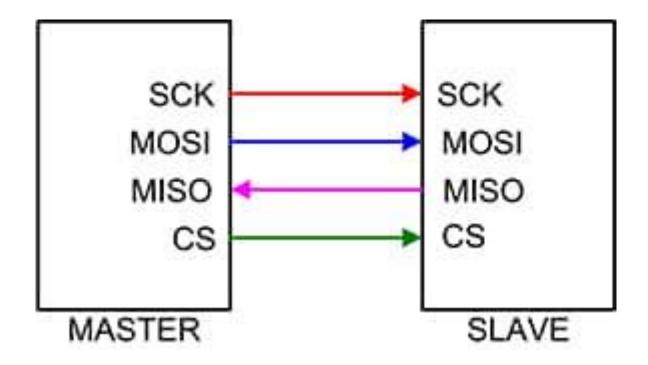
## Digital Vs. Analog Beamforming

#### Analog Beamforming


- Requires phase shifter, splitter and upconverter
- Produces one RF chain source which is then split and sent to multiple phase shifters and antennas

#### Digital beamforming

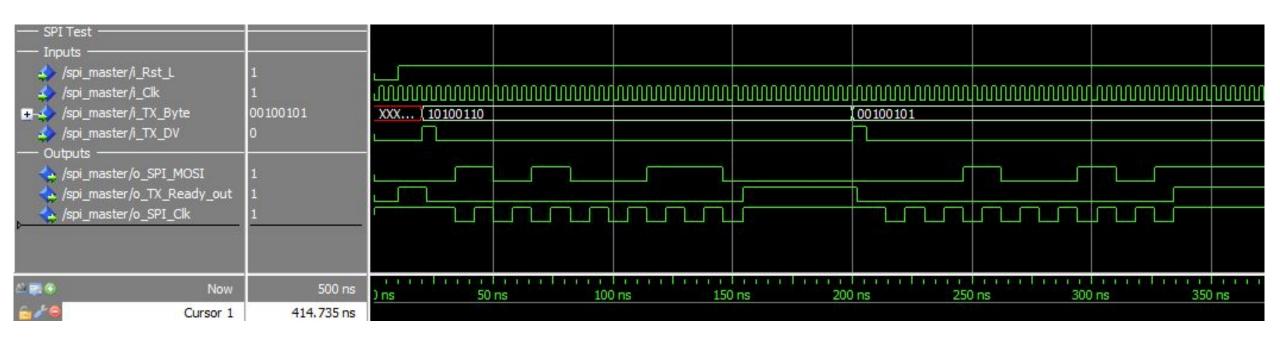
- Requires only DDS and upconverter
- Amplitude scaling, phase shifting of each antenna elements and summation are done digitally.
- Produces multiple RF sources that go to the respective antenna



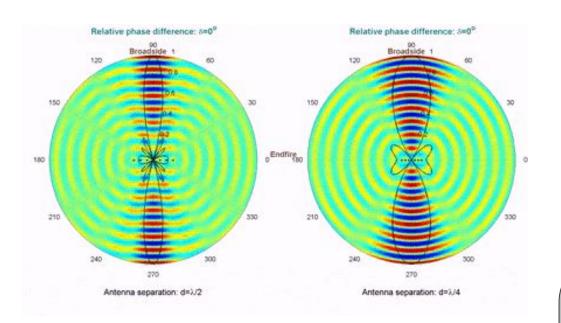

## **Block Diagram**

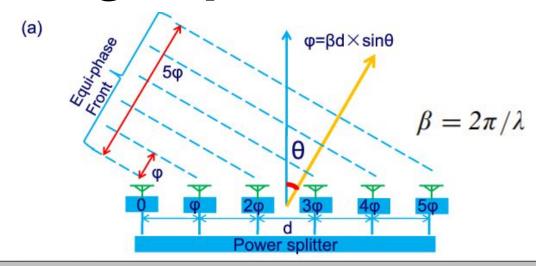


### **Serial Peripheral Interface**


An SPI allows the FPGA to communicate with the DDS without using a GUI.




### **Simulation inputs**


```
###Input Data
radix -binary
force i_Clk 0 Ons, 1 2ns -r 4ns
force i_Rst_L 0 Ons, 1 10ns
force i_TX_Byte 10100110 20ns, 00100101 200ns
force i_TX_DV 0 Ons, 1 20ns, 0 26ns, 1 200ns, 0 206ns
```

#### **SPI VHDL Inputs and Outputs**

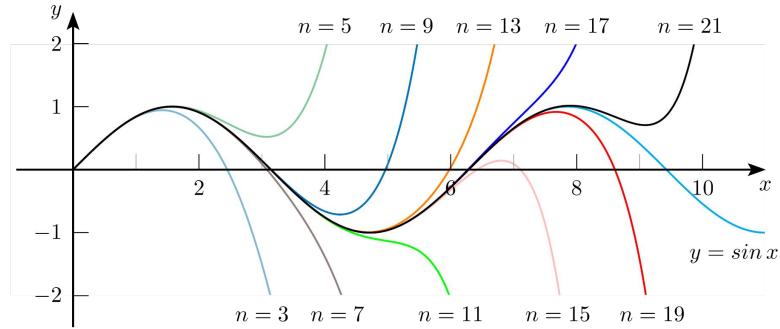


## **Next Step: Implementing Equation**





$$d = \frac{\lambda}{2}$$

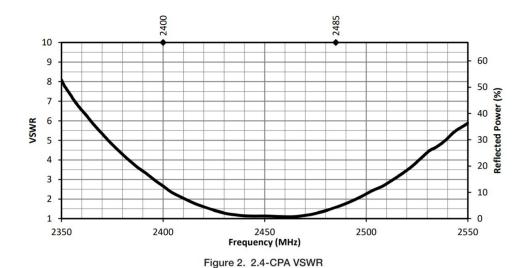

$$\phi = \frac{2\pi}{\lambda} d \times \sin(\theta)$$

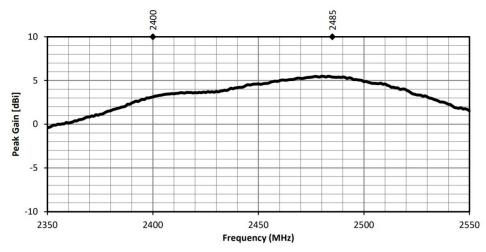
$$\phi = \frac{2\pi \lambda}{\lambda} \times \sin(\theta) \to \phi = \pi \times \sin(\theta)$$

## Taylor Series to Implement the Sine Function

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}$$





#### Website



## **Antenna Testing**

- Test Antennas in 2.4 GHz range
  - Voltage Standing Wave Ratio (VSWR)
    - 2 < VSWR <4
  - Forward gain across antenna bandwidth
    - 3 [dBi] < Gain < 5.5 [dBi]





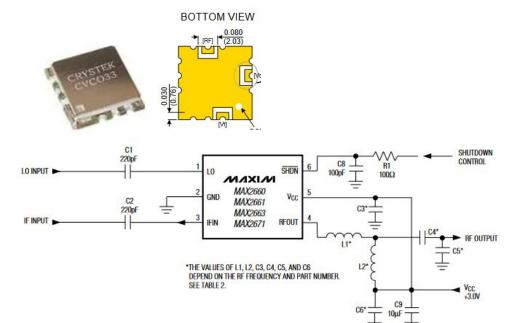
## **Antenna Assembly**

- Antennas are mounted to PCB using a re-peelable adhesive backing
  - Antennas will have their own PCB for Antenna array
- Need large ground plane (40 mm x 40 mm)
  - Ensures better VSWR performance
  - Produces narrower antenna signal beam
    - Maximizes forward gain / radiation efficiency
- Antennas must be properly spread out
  - o distance of  $d = \lambda / 2 = 62.5$  mm

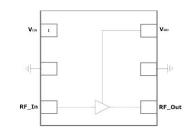


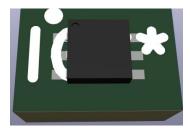
## PCB Design - Main Components

#### **Local Oscillator**


- Crystek CVCO33-1950-2400
- Generates 2.2GHz Signal

#### **Upconverter Mixer**


- Maxim MAX2660
- Mixes 2.2GHz signal from the oscillator with 200MHz signal from the DDS


#### **Low Noise Amplifier**

- Guerilla RF GRF2201
- Provides 20dB Amplification









#### PCB Design - Challenges

#### Challenges

- Learning KiCad EDA software
- Ensuring proper voltage and current biasing
- Maintaining signal integrity
- Soldering must be precise
- Must design footprints for oscillator and upconverter
- Must use 4-layer PCB
  - reduces EMI radiation
  - 8 mm thermal vias required for amplifiers



#### Microcontroller? Is it worth it?

 Microcontroller is not necessary, so we want to make sure we have system properly working

#### Pros

- Increase ease of use
- Could take place of GUI
- Multiple options for control (Boosterpack)
- LCD can come in handy for debugging and testing
- LCD Easy to configure

#### Cons

- Use extra pins on the FPGA
- More time added to project
- Can be accomplished with FPGA Hex display and buttons

#### If we use Microcontroller

- SPI for communication
  - Microcontroller Master, FPGA Slave
- Booster Pack
  - Joystick
    - Move joystick up or down to scroll through possible beam angles
  - LCD Display
    - Will display the desired angle of the beam
- Resolution
  - DDS takes 14 bit input for phase shift
  - Beam should steer from 0 180 degrees, but the DDS sees 0 360, so
  - $\circ$  0.02197 degrees = 1 bit
  - Microcontroller will convert desired angle in degrees to a 14 bit equivalent



#### **Presentation Recap**

- Previous Project Development
  - Digital Vs Analog
- Current Progress Update
  - Configuring SPI with FPGA to DDS
  - Website
  - PCB Design
- Future Work
  - Implement equations in FPGA
  - Wire components together, Soldering
  - Testing and Calibration

#### References

#### Datasheets:

- https://www.mouser.com/datasheet/2/94/CVCO33BE 1950 2400-230 3170.pdf
- https://www.mouser.com/datasheet/2/256/MAX2660-MAX2673-15153 97.pdf
- https://www.mouser.com/datasheet/2/777/GRRF S A0010122589 1-2 575831.pdf
- https://www.mouser.com/datasheet/2/238/LNNC S A0009494921 1-2 551007.pdf

#### **Questions?**