Journal Articles & Reviews

2023

67. Tesfamariam, E.G.; Luo, Y.H.; Zhou, C.; Ye, M.; Krajmalnik-Brown, R.; Rittmann, B.E.; Tang, Y. Simultaneous biodegradation kinetics of 1,4-dioxane and ethane. Biodegradation, in press.

66. Zhou, C.; Tesfamariam, E.G.; Tang, Y.; Li, A. Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric substances. Frontiers of Environmental Science & Engineering, 17(9):107.

65. Eeso, K.; Gallan, R.; Goukeh, M.N.; Tate, K.; Raja, R.K.B.; Popovic, Z.; Abichou, T.; Chen, H.; Locke, B.R.; Tang, Y. Degradation of per-and polyfluoroalkyl substances in landfill leachate by a thin-water-film nonthermal plasma reactor. Waste Management, 161:104-115.

64. Xing, B.; Graham, N.J.D.; Zhao, B.; Li, X.; Tang, Y.; Kappler, A.; Dong, H.; Winkler, M.; Yu, W. Goethite formed in the periplasmic space of Pseudomonas sp. JM-7 during Fe cycling enhances its denitrification in water. Environmental Science & Technologyt, 57(30): 11096–11107.

2022

63. Song, Q.; Graham, N.; Tang, Y.; Siddique, M.S.; Kimura, K.; Yu, W. The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. Water Research, 215, 215, 118263.

62. Tang, Y. A review of challenges and opportunities for microbially removing 1,4-dioxane to meet drinking-water and groundwater guidelines. Current Opinion in Environmental Science & Health, 100419.

61. Zhang, Z.; Asefaw, B.K.; Xiong, Y.; Chen, H.; Tang, Y. Evidence and mechanisms of selenate reduction to extracellular elemental selenium nanoparticles on the biocathode. Environmental Science & Technology, 56(22):16259-16270.

60. Xiong, Y.; Wang, B.; Zhou, C.; Chen, H.; Chen, G.; Tang, Y. Determination of growth kinetics of microorganisms linked with 1, 4-dioxane degradation in a consortium based on two improved methods. Frontiers of Environmental Science & Engineering, 16(5): 1-11.

2021

59. Xiong, Y.; Wandell, R.; Bresch, S.; Tang, Y.; Locke, B.R. Simultaneous degradation of 1,4-dioxane and 1,1,1-trichloroethane with a flowing water-film plasma reactor. International Journal of Plasma Environmental Science and Technology, 15(3):e03006.

58. Zhang, L.; Graham, N.; Derlon, N.; Tang, Y.; Siddique, M.S.; Xu, L.; Yu, W. Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. Journal of Membrane Science, 640:119740.

57. Li, R.; Li, L.; Zhang, Z.; Chen, C.; Tang, Y. Limiting factors of heavy metals removal during anaerobic biological pretreatment of municipal solid waste landfill leachate. Journal of Hazardous Materials, 416:126081.

56. Luo, Y.; Long, X.; Wang, B.; Zhou, C.; Tang, Y.; Krajmalnik-Brown, R.; Rittmann, B.E. A synergistic platform for continuous co-removal of 1,1,1-trichloroethane, trichloroethene, and 1,4-dioxane via catalytic dechlorination followed by biodegradation. Environmental Science & Technology, 55(9): 6363-6372.

2020

55. Luo, Y.; Zhou, C.; Bi, Y.; Long, X.; Wang, B.; Tang, Y.; Krajmalnik-Brown, R.; Rittmann, B.E. Long-term continuous co-reduction of 1,1,1-trichloroethane and trichloroethene over palladium nanoparticles spontaneously deposited on H2-transfer membranes. Environmental Science & Technology, 55(3): 2057–2066.

54. Rodriguez, C.; Wandell, R.J.; Zhang, Z.; Neurohr, J.M.; Tang, Y.; Rhodes, R.; Kinsey, S.T.; Locke, B.R. Escherichia coli survival in plasma‐treated water and in a gas–liquid plasma reactor. Plasma Processes and Polymers, 17(12), 2000099.

53. Zhang, Z.; Tang, Y. Comparing methods for measuring dissolved and particulate selenium in water. Journal of Water and Environment Technology, 18(4):264-274.

52. Zhang, Z.; Xiong, Y.; Chen, H.; Tang, Y. Understanding the composition and spatial distribution of biological selenate reduction products for potential selenium recovery. Environmental Science: Water Research & Technology, 6:2153-2163.

51. Xiong, Y.; Mason, O.U.; Lowe, A.; Zhang, Z.; Zhou, C.; Chen, G.; Villalonga, M.J.; Tang, Y. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation, 31:171–182.

50. Bulusu, R.K.M.; Wandell, R.J.; Zhang, Z.; Farahani, M.; Tang, Y.; Locke, B.R. Degradation of PFOA with a nanosecond‐pulsed plasma gas–liquid flowing film reactor. Plasma Processes and Polymers, e2000074.

49. Li, R.; Li, L.; Zhang, Z.; Chen, H.; McKenna, A.M.; Chen, G.; Tang, Y. Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biological pretreatment. Waste Management, 106:88-89.

48. Wang, B.; Krajmalnik-Brown, R.; Zhou, C.; Luo, Y.; Rittmann, B.E.; Tang, Y. Modeling trichloroethene reduction, methanogenesis, and homoacetogenesis in a H2-based biofilm. Journal of Environmental Engineering, 146(2):04019115.

2019

47. Li, S.; Li, R.; Tang, Y.; Chen, G. Microwave-induced heavy metal removal from dewatered biosolids for cost-effective composting. Journal of Cleaner Production, 241:118342.

46. Wang, Z.; Chen, X.M.; Ni, B.J.; Tang, Y.; Zhao, H. Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor. Water research X, 5, 100037.

45. Li, R.; Zhang, Z.; Li, S.; Tang, Y.; Wei, C.; Chen, G. 2019. Cadmium–bacteria complexation and subsequent bacteria-facilitated cadmium transport in saturated porous media. Journal of Environmental Quality, 48(5):1524-1533.

44. Li, L.; Tang, Y.; Abichou, T.; Higgs, B.; Wireko, C.; Li, R. 2019. Characterization of leachates from landfills containing MSW-I residues. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4):04019013.

43. Tang, Y.; Zhang, Z.; Rittmann, B.E.; Lee, H.S. 2019. Kinetics of anaerobic methane oxidation coupled to denitrification in the membrane biofilm reactor. Biotechnology and Bioengineering, 116(10):2550-2560.

42. Xiong, Y.; Mason, O.U.; Lowe, A.; Zhou, C.; Chen, G.; Tang, Y. 2019. Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation. Applied and Environmental Microbiology, 85(11):e00244-19.

41. Xiong, Y.; Zhang, Q.; Wandell, R.; Bresch, S.; Wang, H.; Locke, B.R.; Tang, Y. 2019. Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation. Chemical Engineering Journal, 361:519-527.

40. Zhou, C.; Ontiveros-Valencia, A.; Nerenberg, R.; Tang, Y.; Friese, D.; Krajmalnik-Brown, R.; Rittmann, B.E. 2019. Hydrogenotrophic microbial reduction of oxyanions with the membrane biofilm reactor. Frontiers in Microbiology, 9:3268.

2018

39. Zhang, Z.; Adedeji, I.; Chen, G.; Tang, Y. 2018. Chemical-free recovery of elemental selenium from selenate-contaminated water by a system combining a biological reactor, a bacterium-nanoparticle separator, and a tangential flow filter. Environmental Science & Technology, 52(22):13231-13238.

38. Lee, H.S.; Tang, Y.; Rittmann, B.E.; Zhao, H.P. 2018. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Critical Review in Environmental Science & Technology, 1-27.

37. Zhang, Z.; Chen, G.; Tang, Y. 2018. Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles. Chemical Engineering Journal, 351:1095-1103.

36. Alrashed, W.; Lee, J.; Park, J.; Rittmann, B.E.; Tang, Y.; Neufeld, J.D.; Lee, H.S. 2018. Hypoxic methane oxidation coupled to denitrification in a membrane biofilm. Chemical Engineering Journal, 348:745-753.

35. Ontiveros-Valencia, A.; Zhou, C.; Zhao, H.P.; Krajmalnik-Brown, R.; Tang, Y.; Rittmann, B.E. 2018. Managing microbial communities in membrane biofilm reactors. Applied Microbiology and Biotechnology, 102(21):9003-9014.

34. Li, A.; Zhou, C.; Liu, Z.; Xu, X.; Zhou, Y.; Zhou, D.; Tang, Y.; Ma, F.; Rittmann, B.E. 2018. Direct solid-state evidence of H2-induced partial U(VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnology and Bioengineering, 115(7):1685-1693.

33. Lv, P.L.; Zhong, L.; Dong, Q.Y.; Yang, S.L.; Shen, W.W.; Zhu, Q.S.; Lai, C.Y.; Luo, A.C.; Tang, Y.; Zhao, H.P. 2018. The effect of electron competition on chromate reduction using methane as electron donor. Environmental Science and Pollution Research, 25(7):6609-6618.

2017

32. Tang, Y.; Liu, H. 2017. Modeling multidimensional and multispecies biofilms in porous media. Biotechnology and Bioengineering, 114(8):1679-1687.

31. Wen, L.L.; Zhang, Y.; Chen, J.X.; Zhang, Z.X.; Yi, Y.Y.; Tang, Y.; Rittmann, B.E.; Zhao, H.P. 2017. The dechlorination of TCE by a perchlorate reducing consortium. Chemical Engineering Journal, 313:2015-2021.

2016

30. Lai, C.Y.; Wen, L.L.; Shi, L.D.; Zhao, K.K.; Wang, Y.Q.; Yang, X.; Rittmann, B.E.; Zhou, C.; Tang, Y.; Zheng, P.; Zhao, H. 2016. Selenate and nitrate bio-reductions using methane as the electron donor in a membrane biofilm reactor. Environmental Science & Technology, 50(18): 10179-10186.

29. Lai, C.Y.; Zhong, L.; Zhang, Y.; Chen, J.X.; Wen, L.L.; Shi, L.D.; Sun, Y.P.; Ma, F.; Rittmann, B.E.; Zhou, C.; Tang, Y.; Zheng, P.; Zhao, H. 2016. Bio-reduction of chromate in a methane-based membrane biofilm reactor. Environmental Science & Technology, 50(11):5832-5839.

28. Wen, L.L.; Yang, Q.; Zhang, Z.X.; Yi, Y.Y.; Tang, Y.; Zhao, H.P. 2016. Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture. Science of the Total Environment, 571:11-17.

27. Chen, R.; Luo, Y.H.; Chen, J.X.; Zhang, Y.; Wen, L.L.; Shi, L.D.; Tang, Y.; Rittmann, B.E.; Zheng, P.; Zhao, H. 2016. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environmental Science and Pollution Research, 23(10):9540-9548.

26: Zhang, Y.; Chen, J.X.; Wen, L.L.; Tang, Y.; Zhao, H.P. 2016. Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor. Environmental Science and Pollution Research, 23(23):24248-24255.

2015

25. Tang, Y.; Valocchi, A.; Werth, C. 2015. A hybrid pore-scale and continuum-scale model for solute diffusion, reaction and biofilm development in porous media. Water Resources Research, 51(3):1846-1859.

24. Tang, Y.; Werth, C; Sanford, R.; Singh, R.; Michelson, K.; Nobu, M.; Liu, W.; Valocchi, A. 2015 Immobilization of selenite via two parallel pathways during in-situ bioremediation. Environmental Science & Technology, 49(7):4543-4550.

23. Xia, S.; Wang, C.; Xu, X.; Tang, Y.; Wang, Z.; Gu, Z.; Zhou, Y. 2015. Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO2 for pH control and as carbon source. Chemical Engineering Journal, 276:59-64.

22. Wen, L.L.; Zhang, Y.; Pan, Y.W.; Wu, W.Q.; Meng, S.H.; Zhou, C.; Tang, Y.; Zheng, P.; Zhao, H.P. 2015. The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environmental Science and Pollution Research, 22(23):19039-19047.

2014

21. Ontiveros-Valencia, A.; Tang, Y.; Zhao, H.; Friese, D.; Overstreet, R.; Smith, J.; Evans, P.; Rittmann, B.E.; Krajmalnik-Brown, R. 2014. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environmental Science & Technology, 48(13):7511-7518.

20. Lai, C.; Yang, X.; Tang, Y.; Rittmann, B.E.; Zhao, H. 2014. Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environmental Science & Technology, 48(6):3395-3402.

19. Ontiveros-Valencia, A.; Tang, Y.; Krajmalnik-Brown, R.; Rittmann, B.E. 2014. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Research, 55:215-224.

18. Zhao, H.; Ontiveros-Valencia, A.; Tang, Y.; Kim, B.; Van Ginkel, S.; Friese, D.; Overstreet, R.; Smith, J.; Evans, P.; Krajmalnik-Brown, R.; Rittmann, B.E. 2014. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Research, 54:115-121.

17. Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; Tang, Y.; Liu H.; Yoon, H.; Kang, Q.; Joekar-Niasar, V.; Balhoff, M.T.; Dewers, T.; Tartakovsky, G.D.; Leist, E.A.; Hess, N.J.; Perkins, W.A.; Rakowski, C.L.; Richmond, M.C.; Serkowski, J.A.; Werth, C.J.; Valocchi, A.J.; Wietsma, T.W.; Zhang, C. 2014. Pore-scale and continuum simulation of solute transport micromodel benchmark experiments. Computational Geosciences, DOI: 10.1007/s10596-014-9424-0.

2013

16. Tang, Y.; Valocchi, A.J. 2013. An Improved Cellular Automaton Method to Model Multispecies Biofilm. Water Research, 47(15):5729-5742.

15. Tang, Y.; Ontiveros-Valencia, A.; Feng, L.; Zhou, C.; Krajmalnik-Brown, R.; Rittmann, B.E. 2013. A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnology and Bioengineering, 110(3):763-772.

14. Tang, Y.; Valocchi, A.J.; Werth, C.J.; Liu, H.* 2013. An improved pore-scale biofilm model and comparison with an experiment in a micro-fluidic flow cell. Water Resources Research, 49(12):8370-8382.

13. Tang, Y.; Krajmalnik-Brown, R.; Rittmann, B.E. 2013. Modeling trichloroethene reduction in a hydrogen-based biofilm. Water Science & Technology, 68(5):1158-1163.

12. Zhao, H.; Ontiveros-Valencia, A.; Tang, Y.; Kim, B.; Ilhan, Z.E.; Krajmalnik-Brown, R.; Rittmann, B.E. 2013. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environmental Science & Technology, 47(3):1565-1572.

11. Zhao, H.; Ilhan, Z.E.; Ontiveros-Valencia, A.; Tang, Y.; Rittmann, B.E; Krajmalnik-Brown, R. 2013. Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environmental Science & Technology, 47(13):7396-7403.

10. Ontiveros-Valencia, A.; Tang, Y.; Krajmalnik-Brown, R.; Rittmann, B.E. 2013. Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm. Biotechnology and Bioengineering, 110(12):3139-3147.

2012

9. Tang, Y.; Zhao, H.; Marcus, A.; Krajmalnik-Brown, R.; Rittmann, B.E. 2012. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate – part 1: model development and numerical solution. Environmental Science & Technology, 46(3):1598-1607.

8. Tang, Y.; Zhao, H.; Marcus, A.; Krajmalnik-Brown, R.; Rittmann, B.E. 2012. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate – part 2: parameter optimization and results and discussion. Environmental Science & Technology, 46(3):1608-1615.

7. Tang, Y.; Zhou, C.; Van Ginkel, S.W.; Ontiveros-Valencia, A.; Shin, J.; Rittmann, B.E. 2012. Hydrogen permeability of the fibers used in H2-based membrane biofilm reactors. Journal of Membrane Science, 407-408:176-183.

6. Tang, Y.; Ziv-El, M.; Meyer, K.; Zhou, C.; Shin, J.H.; Ahn, C.H.; McQuarrie, J.; Candelaria, D.; Swaim, P.; Scott, R.; Rittmann, B.E. 2012. Comparing heterotrophic and hydrogen-based autotrophic denitrification reactors for effluent water quality and post-treatment. Water Science & Technology: Water Supply, 12(2):227-233.

2011

5. Tang, Y.; Zhou, C.; Ziv-El, M.; Rittmann, B.E. 2011. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Research, 45(1):232-240.

4. Tang, Y.; Ziv-El, M.; Zhou, C.; Shin, J.H.; Ahn, C.H.; Meyer, K.; McQuarrie, J.; Candelaria, D.; Swaim, P.; Scott, R.; Rittmann, B.E. 2011. Using the carrier-surface loading to design heterotrophic denitrification reactors. Journal American Water Works Association, 103(3):68-78.

3. Zhao, H.; Van Ginkel, S.; Tang, Y.; Kang, D.W.; Rittmann, B.E.; Krajmalnik-Brown, R. 2011. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor, Environmental Science & Technology, 45(23), 10155-10162.

2. Van Ginkel, S.; Tang, Y.; Rittmann, B.E. 2011. Impact of precipitation on the treatment of real ion-exchange brine using the H2-based membrane biofilm reactor. Water Science & Technology, 63(7), 1453-1458.

2010

1. Tang, Y.; Ziv-El, M.; Zhou, C.; Shin, J.H.; Ahn, C.H.; Meyer, K.; Candelaria, D.; Friese, D.; Overstreet, R.; Scott, R.; Rittmann, B.E. 2010. Bio-reduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor. Frontiers of Environmental Science & Engineering, 4(3):280-285.

Papers in Chinese

4. Hu, S.; Tang, Y.; Wu, Q.; Zhang, Y. 2013. Simulation and validation of surges in the forebay of the circulating water system of a nuclear power plant, Water & Wastewater Engineering, 39(5):156-160.

3. Tang, Y.; Xie, L.; Fang, Z.; Que, S. 2007. Application and development trend of automatic sprinkler system in tunnels. China Water & Wastewater, 18:1-4.

2. Tang, Y.; Cheng, X.; Wang, H. 2004. Co-metabolism and its application in wastewater treatment. Environmental Protection, 10:22-25.

1. Shao, Q.; Li, X.; Ding, C.; Tang, Y.; Gong, Q. 2008 Matlab-based simulation of water treatment experiments. Experimental Technology and Management, 25(11), 80-83.