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General State of Stress

In general, the three dimensional
state of stress at a point in a body
can be represented by nine
components:

0,40y, and 0,,: Normal stresses
Ty Tyx Tyr Tox Ty, @NAT,, : Shear

Xy “yx zZX ‘yz
sUesses

By equilibrium, we can show that
there are only six independent
components of the stregg ,0,,

o, .1 andr

zz 1 Xy’ Tz
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Plane Stress

* In much of engineering
stress analysis, the
condition ofplane stress
applies.

e Plane Stres©ne of the
three normal stresses,

usuallyo,vanishes and the
other two normal stresses

o, and g, and the shear F o,
stressr,, are known. ‘ {




Plane Stress Transformation:
Finding Stresses on Various Pla

e

e General Problem:

e * Giventwo coordinate
systems, x-y and x' -y', and a
stress state defined relative to
the first coordinate systeryz

0, 0, Ty,

e * Findthe stress components
relative to the second
coordinate systemy'z’ : g,
Oy Ty

Ty
—T—»’“EF
T
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Plane Stress Transformation

o Consider a triangular
block of uniform
thickness, t:

* For equilibrium:

SEF.L=tLd'
—t{LcosB)o, cos8 —t{Lcos Q)Tx}, sin &
— t(Lsin 9)-::1}, sin & — t( L sin -9)1:;}, cosf =0
SEFy=tlt,,
+1{LcosB)o, sin 8 —t{Lcos 9)1:1}, cos 8
— t(Lsin 6')(]}, cos 8 — (L sin H)Tx}, sin 8 =0




Plane Stress Transformation

o Simplifying:

2 -2 :
g'y=0,co8" 8+0,8n" 0 +27,,smbcosd

2 . 2 -
.T'W=TW(CDS & —sin 8)—(CII—U}})SIHQCDSQ
e Using :

00526‘=%(1+m526‘) sin28=%(1—c0528)
1

sin & cosf = Esin 28




Transformation Equations for
Plane Stress

Known values Unknown values
Y | E
Oy,
__._EW
o[ LI ,x
stress element i
T’K‘v’q#
Oy
T+ T T — T
x X
g = Lo yc0526’+11}}51n26'
2
T, + O, T,y — Oy ]
g = — cos28 — 1t _sn28
d 2 2 =
Ty — Ty .
g = — sinz28 +t...cos28
Y 2 XV
— O, +0 =0, + T,




Special Cases of Plane Stress

1. Uniaxial Stress Stater, = 1,,=0

1 2 T Y ¥
G'x=§cjx(l+00528)=cjxcos 8 . | - -—
G'},=%Ux(1—00828)= a, sin”

T oy=—70,8M28 = -0, s1n fcosd
2 TUF
» 2.Biaxial Stress State,,= 0
y UE F ﬂx
g, + T T, — T - L)- —-
= Y + Y cos28 X
2 2
G'},=Ux+gy—gx_gycc5529 i
2 2 o,
= ——2 ¥ in 20
Xy =" 5 sin




Special Cases of Plane Stress

* 3.Pure Sheao, =0,= 0 —
y
= Tl},SiI] 28 = ZTI]}SiIl 8cosf l L’:T: }
_ . Xy Xy

D-II
a,=-7 sin 28 = -271_ sin 8 cosf LS —
T xy

= T,y COS 20 = TI},(CDSZ 8 — sin” &)




Principal Stress

o', varies as a function of the angbe

o,+0, O,-0

g, = LA Y c0s20 + 71, sin28
2 2 w

The maximum and minimum valuesa@f are called therincipal
stressesTo find the max and min valuesdg'X

de

djé" =—(o, — U},)Sin 28+ 21:@, cos28 =0
27T
= tan26’P = dd
T, — Ty

Wherebp defines the orientation of the principle planesadmch the
principle stress act.




Principal Stress

Two values of 8, in the range of 0 to 360
satisfy this equation.

These two values differ by 180° so tigt |
has two values that differ by 90°, one

between 0 and 90° and the other between
90° and 180°. @

In-plane principal stresses

For one of the anglé}, , the stress is a
maximum principal stres&() and for the
other it is a minimumd,).

Because the two values @fare 90° apart,
==> the principal stress occur on mutually
perpendicular planes.



Principal Stress

e TO calculateep consider

the triangle

2
3 Ty — Ty, 9
R_\/[72 ] + TS,

Ty — Ty,

COSEQP =

2R

T
: — Xy
sin28,, =

e Subbing back in yields the

principal stresses:

e OR

= 013 = Ogyg =R

R
20

oy -0y) 12

oy = 0, (F,)

oy = O, (8, +90°)

2
J_ 4+ F 0. — 0J
— X ¥ x ¥ z
Ul'[ 2 ]+\/[ 2 ] M

2
o, + 0T g, — T
C’z:( 2 y]_\/[ 2 y] 7o

where

g, +ag
') —

¥
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Shear Corresponding to Principal
Stress

The shear stress corresponding to the principal
stress direction is given by:

12 = T'l};(ep)

g, -0 -
=_[ 9% Py o [ 95T
2 R Vi 2R

=0 v

T
The shear stress is identically zero in thcﬂz% i Fﬁz
principal stress directions! (biaxial stress .

state) tx;T




Maximum Shear Stress

e To find maximum shear:

dr’xy:O

dé
T _ 10526 - 27 5in20 =0 = tan28, = - X2
dx = UI U}} COS TI_}? 5111 = — lan o 21:1}?

« Wheref,_ defines the angle of the planes of maximum
shear stress.

8,= 6, +90°

Ty

(a) In-plane principal stresses




Maximum Shear Stress

e From trigonometry
PS =08, +45°

* The planes of maximum
shear stress occur at 45° to
the principal planes.

» Subbing back in yields

Maximum in-plane shear stress and
associated average normal stress

max shear: Tmax = T xy (05)
O, — Oy z
Tax = 5 + Ty = R
_ Ul — Uz
2




Maximum Shear Stress

 The normal stress corresponding to the max
shear stress direction Is given by:

GII=G|I(83)
=CII+U}}+UI—U},TJ},_ CII—CI},
2 2 R YLO2R
J,. +a
B Y _
- 9 _'j.-:wg




Summary of Equations

2T
tan28, = = 8, =0,+45
g, — 0y
2z
R:\/[UIZU};] +T§T
g, +a
Oype = ——




Mohr's Circle for Plane Stress

* Recall the plane stress transformation equations:

Oy — Oy _
Oy = Ogye + 5 cos26 + 7,828

g, —a

T'x},=— > ysin28+rﬂ}00528

 Rearrange to get

2 2 2
J+(7y) =R
« The above equation is for a circle of radius & @entero,,,

= (CT'I S Tave




Mohr's Circle for Plane Stress

* Mohr’s circle equation

 Equation of a circle in the', T,
plane centered aol{,,, 0) and radius R

* Every plane becomes a point on the circle.
* The intersection with th&, axis defines the

rincipal stresses| —
P P S:I + |gv15-D — I-D

* The bottom and top center positions corresporn

A- 0 =:0

(Tavg Tmax)

r

m

~ - Randr_.. =-R




Procedures to Construct Mogr
Circle

With o,, 0, andt,, known, the procedure for constructing Mohr's circle
IS as follows;

1) Draw a set of coordinate axes withas abscissa (positive to the right) and
T as ordinate (positive upward)

« 2) Locate the center C of the circle at the phating coordinates(,,., 0)
 3) Locate point A, representing the stress comaition the face AJ, - T,,)

* 4) Locate point B, representing the stress commstion the face BX, T,,)

 5) Draw a line from point A to point B. This ling a diameter of the circle and
passes through the center C

e 6) Using point C as the center, draw Mohr's cithl®ugh points A and B.

e 7) On the circle, we measure an andelbckwise from radius CA. The angle
20 locates point D.

 Point D on the circle represents the stressel@face D of the element.

* Note that an angle@2on Mohr's circle corresponds to an angjlen a stress
element.



Procedures to Construct Moér

Circle
&5, bl
\




Plane Strain

Plane strain is defined by the strair
state & €, Yy, ) ; itis the limiting
condition in the center plane of a
very thick specimen.

Consider a rectangular element of
material, OABC, in the xy-plane

I . . . CAcC
shown in Figure; it is required to fin g 'Cosd

X

the normal and shearing strains in
direction of the diagonal OB, when
the normal and shearing strains in

directions Ox, Oy are given. bye . v .lecdlosirains e yalong

the indined direction O8

*Straing in an inclined direction;
sTrains in the directions Cx, Oy ond defined




Strain Transformation

Assume that strain
transformation is desired from
anxy coordinate system to an

Xy' set of axes, where the latter|y

IS rotated counterclockwise @y
from thexy system.

The transformation equations

for plane strain are

.k —E T, .
E .= L+ Lops 28+ —L5in?2d

- -

E +E £ —E v
£ .= L Leons 28— —Ssin?d

- -

T.l:"'" E.:_E . T.l:'
L= J5|r11'EI+T’::::|51'EI

- - -

O &l Element

Element of size dx by dy at angle 0 before and after the application

of biaxal stresses, showing its deformation

-

X




Principal Strains

For isotropic materials only,
principal strains (with no shear
strain) occur along the principal

axes for stress.

strainse, ande, are expressed g =0t L
as A

In plane strain the principal \l
- [

The angular positiod, of the
principal axes (measured

positive counterclockwise) with
respect_ to the givexy system is 15 =
determined from ¥




Maximum Shear Strain

* Like in the case of stress,
. . N _ -
the maximum in-plane | g £, —E, N T
shear strain is: Wz
which occurs along axes at

45° from the principal
- £ —F
axes, determined froBy tan 28 = — "T !
e The corresponding .

average normal strain is g o=t




Mohr's Circle of Strain

 The direct and shearing

strains in an inclined
direction are given by
relations which are similar
to the Equations for the
direct and shearing
stresses on an inclined
plane.

This suggests that the
strains in any direction can
be represented graphically
In a similar way to the
stress system.

cos28 +1 ., 51n28

O+ Oy Ty — Ty )
dy— 5 — 00328—1:1?81n28
Ty — Ty
T'xy= — sin 28 +1:xycos26'
= O, +0' =0, +0,
£ +E £ —E T
E.= - L+ Lops28+—Ss5in?8
E +E E —F T
£ .= L Leons 28— —Ssin?d
’ 2 2 2
T.l:"'" E.:_E . T.l:'
j’ =— Lein?8+ —Lecos24




Mohr's Circle of Strain

As in the case of stress, there is a
graphical overview by Mohr’s

circle of the directional dependeng v

of the normal and shear strain ) aw B s
. . . - BRI

components at a point in a materie

! lJIJl- B E‘:ﬂ'jl

This circle hasi centeC ate,,, = w[/\ S
. "'I.Tﬁ:.-l )

(ex+ gy )/2 which is always on the B
axis, but is shifting left and right in
a dynamic loading situation. The

radiusR of the circle is




Mohr's Circle of Strain

For given values dd,, €, andy,, It

IS constructed in the following
way:

Two mutually perpendicular axes,
e andy/2, are set up

The points ¢, v,,/2) and €,, -V,
/2) are located; the line joining
these points is a diameter of the
circle of strain.

The values of and y/2 in an
Inclined direction making an angle
0 with Ox are given by the points
on the circle at the ends of a
diameter making an angl® 2vith
PQ; the angle@ is measured
clockwise.

[¥2)

F Y

Ple .y

/2

Xy

Rlz.w2)

rChr's Circle of strain: the dagam
5 similar to the circle of stress, except that w2 is
plofted clong the ordinates and noty,




Mohr's Circle of Strain

 We note thathe maximum
and minimum values &, | -. / \
given bys, ande, occur 7N | g
wheny/2 is zerge,, €, are \.ﬁ TN e
called principal strainsand
occur for directions In . T
which there is no shearing %

. Mohr Circle for Strain
strain.



Strain Rosette

Define the terms, % Eyy Yxy @S the strains

of an element of size (Jx*dy) at an angle
0 with respect to the horizontal axis.

Then the equations which defines these
strains are: y

- 2 2 ,
£, = £,,008°0 + £, 511 8 + yvcnsﬁ gin 6

If the strain at any angle could be
measured,the equation above can then

: V™
be used to determine the direct and shea /}

strains in the structure about the x & y X l

Origin al Element

axes.

-

Element of size dx by dy at angle 6 hefore and after the application
of hiaxial stresses, showing its deformation

X

These measurements are done using a
Strain Gauge Rosette.




Strain Rosette

A normal arrangement is to have
three strain gauges oriented at three
different angles w.r.t the horizontal
axis of the structure, like this:

» Because we have three unknowns 0
terms and you want to find,, €, /X
Y., ,USe equation b \/

- 2 2 ,
£, = £,,008°0 + £, 511 8 + yvcnsﬁ gin 6

three times, once for each angle. Then
solve for the three strain

—_ 2 fiA 2 ;
Ey —E,C08°0, +& sIN"G, +)y, sinf, coso,

a

— 2 f~2 :
£, = E,C08° G, +& sIn" G, +y, sinb, cosb,

(a)

£, = £,C08° 0, +¢£,sin*G, +y, siné, cosl,

Cc




Strain Rosette

e Strain rosettes are often
arranged in 45 or 60 patterns,
such that the solutions for the
unknowns will be as follows:

For the45’ Rosette: (6, =0°,6, =45',6, =90")
gX = ga

£, =&,

Vi = 26, — (&, +&,)

For the6(® Rosette: (6, =0°,6, =60, 4, =120)

45° strain rosette

(b

60° strain rosette

©




Material Property Relationships

e Generalized Hooks Lawhce

we have the strains use the relationships

between stress and strain to find the stress
for isotropic material)

E, = é(ax -v(o, + JZ))
£, = é(ay -v(o, + az))
£, = %(az -v(o, + JX))
TXY
Yo =G Where
y, =le E: Young’s modulus, E
TG v: Poisson’s ratio = 1
Ve = G: Shear modulus L+v)




Dilatation

« Under the application of
normal stresses, the volume
of the material will change.

 The change in volume per
unit volume(dV/V) is called
thedilatation:e




Bulk Modulus

* A material under the action of L
equal compressive stresses s in | —
three mutually perpendicular ol wl o
directions, is subjected to a R . .
hydrostatic pressur@, The term / A
hydrostatic is used because the O (L
material is subjected to the same 2
stresses as would occur if it were | .
immersed in a fluid at a Heielen @ elieites]

considerable depth Lnder a hydrGsTahic pressure

[c =c =c =conde=g +& +&
X

e v z Y Z
 The ratio between the hydrostatic
pressure and the dilatation is called
the Bulk modulus : k K = P E
e 3(1-2v)




