Mechanics \& Materials 1

Chapter 14

Combined Loadings

FAMU-FSU College of Engineering
Department of Mechanical Engineering

Thin Walled Pressure Vessels

- Cylindrical or spherical pressure vessels are used in industry as tanks, boilers or containers.
- When under pressure the material is subjected to loadings in all directions.
- In general thin wall refers to an inner radius to wall thickness ratio $\mathrm{r}_{\mathrm{i}} / \mathrm{t} \geq 10$, in most cases it is actually >50.
- If the vessels wall is thin, the stress distribution through the thickness can be assumed to be uniform or constant.

Cylindrical Pressure Vessels

- Consider tubes with an internal pressure and closed ends
- $\sigma_{\mathrm{xx}} \rightarrow$ axial stress due to the pressure on the end walls
- $\sigma_{\theta \theta} \rightarrow$ "Hoop" stress due to the pressure acting on the curved surface.
- P is the internal pressure

- Look at a FBD of the axial section

Cylindrical Pressure Vessels: Axial Stress

- Consider the axial equilibrium on this structure.

$$
\begin{gathered}
\text { structure. } \\
\sum F_{x}=0=-P \pi r^{2}+2 \pi r t \sigma \\
\sigma_{x x} *(2 \pi r t)=P \pi r^{2}
\end{gathered}
$$

- Which gives the equation for Axial Stress:

$$
\sigma_{x x}=\sigma_{2}=\frac{\operatorname{Pr}}{2 t}
$$

FBD of axial section of a cylindrical pressure vessel

Cylindrical Pressure Vessels: Hoop Stress

Look now at a FBD of the circumferential section

- Equating the forces
vertically gives:
$\sum F_{y}=0=-P * R * 2 L+\sigma_{\theta \theta} * 2 L t$

$$
2 \sigma_{\theta \theta}(L t)=2 r L P
$$

- Which simplifies to give the equation for Hoop Stress:

$$
\sigma_{\theta \theta}=\sigma_{1}=\frac{p r}{t}
$$

FBD of circumfereential section ofthe cylindrical presolue vessel

Cylindrical Pressure Vessels

- Pressure vessels also have stresses created by the weight of the pressurized fluid inside, its own weight, externally applied loads and by an applied torque.
- To analyze this, each loading condition is analyzed individually and the stresses are then combined along their respective axes by the superposition method.
- Pressure vessel with ALL possible loading conditions:

Pressure Vessel With ALL Possible Loading Conditions:

Element of pressure vessel with all possible stresses from all possible applied loads

Spherical Pressure Vessels

- Common for storing liquid gases (maximum storage volume for the least volume of material)
- Equating the forces vertically:
$\sum F_{y}=0=-P * \pi r^{2}+2 \pi r t \sigma$

- Which simplifies to:
- This is not dependent on the orientation of our FBD, so this

$$
\sigma=\frac{\operatorname{Pr}}{2 t}
$$ stress acts on both surfaces of the element simultaneously.

Example

- A steel gas bottle 2 m long with a diameter of 250 mm and a 3 mm wall thickness is pressurized to 3 MPa .
- Determine the stresses

FBD of axial section of a cylindrical pressure vessel

Solution

$$
\begin{gathered}
\sigma_{x x}=\frac{P r}{2 t}=\frac{3 \times 10^{6} x 0.125}{2 \times 0.003}=62.5 \mathrm{MAPa} \\
\sigma_{\theta \theta}=\frac{P r}{t}=\frac{3 \times 10^{6} x 0.125}{0.003}=125 \mathrm{MPa}
\end{gathered}
$$

Problem 14.1

- The spherical gas tank has an inner radius of $r=$ 1.5 m . (If it is subjected to an internal pressure of $\mathrm{p}=300 \mathrm{kPa}$, determine its required thickness if the maximum normal stress is not to exceed 12 MPa .

Solution

$$
\begin{aligned}
\sigma_{z}=\sigma_{\text {allow }} & =\frac{\operatorname{Pr}}{2 t} \\
12\left(10^{6}\right) & =\frac{300\left(10^{3}\right)(1.5)}{2 t} \\
t & =0.01875 \mathrm{~m}=18.8 \mathrm{~mm}
\end{aligned}
$$

Example 14.3

- The cap of the cylindrical tank is bolted along the flanges. The tank has an inner diameter of 1.5 m and a wall thickness of 18 mm .
- If the largest normal stress is not to exceed 150 MPa , determine the maximum pressure the tank can sustain.
- Also compute the number of bolts required to attach the cap to the tank
 if each bolt has a diameter of 20 mm .
- The allowable stress for the bolt is 180 MPa

Solution

$$
\begin{aligned}
& \sigma_{1}=\frac{\rho r}{t} \quad \text { here } \mathrm{r}=0.759 \mathrm{~m} \\
& 150\left(10^{6}\right)=\frac{\rho(0.75)}{0.018} \\
& \rho=3,600,000 \mathrm{~N} / \mathrm{m}^{2}=3.60 \mathrm{MPa} \\
& F_{p r}=F_{b}=3.60\left(10^{6}\right)(\pi / 4)\left(1.5^{2}\right) \\
& \quad=6361.73 \mathrm{kN} \\
& \begin{array}{r}
\sigma_{\text {allow }}=\frac{F_{b}}{n A_{b}}
\end{array} \\
& \begin{array}{l}
180\left(10^{6}\right)=\frac{6361.73\left(10^{3}\right)}{n(\pi / 4)(0.02)^{2}} \\
n=112.5 \Rightarrow 113
\end{array}
\end{aligned}
$$

Analysis of Stress in Combined Loading

- Normal Stress Sources(σ)
- Axial Load :- The uniform normal stress distribution due to the normal force.

$$
\sigma=\frac{F}{A}
$$

- Bending Moment :- Normal stress distribution due to the bending moment.

$$
\sigma=\frac{M y}{I}
$$

- Pressure Cylinder :- Biaxial state of stress in the material due to pressure in a thin-walled cylinder.

$$
\sigma_{2}=\frac{p r}{2 t} \quad \sigma_{1}=\frac{p r}{t}
$$

- Thermal :- Normal stress distribution due to temperature change.

$$
\sigma=\alpha \Delta T E
$$

Analysis of Stress in Combined Loading

- Shear Stress Sources (τ):
- Torsion:- Shear-stress distribution that varies linearly from the central axis to the maximum at the shaft's outer boundary.

$$
\tau=\frac{T \rho}{J}
$$

- Transverse Shear Stress :- Shear stress distribution that acts over the cross section.

$$
\tau=\frac{V Q}{I t}
$$

Analysis of Stress in Combined Loading

- After finding each component of the stress we
- add (algebraically) all those components which contribute normal stress to get the total normal stress
- add (algebraically) the components which give a shear stress to get the total shear stress.
- We can't add a shear component to a normal stress component, because stresses are tensorial quantities which need at least 2 directions rather than one as in the vectors.

Analysis of Stress in Combined Loading

Remember to assign positive or negative signs for the stresses according to

- Axial Loading $\sigma+$ (tension), $\sigma(-)$ compression
- Bending: σ sign depends on both M sign and c sign, M sign from Moment diagram, c sign from N.A location
- Pressure: Inside pressure $\sigma+$, outside pressure σ -
- Thermal: Heating: expansion $+\sigma$, cooling: contraction: $-\sigma$
- Torsion: τ sign depends on torque (T) sign (Right hand rule)
- Transverse Shear: τ sign depends on Q sign (N.A location and section of interest) and shear force sign V , from shear diagram)

Combined Loading

- This example has multiple stress components. The stresses on the rod are axial, shear, two bending, and a torsional stress.
- NOTE THAT ONLY 2 LOADS LEADS TO 5 STRESS COMPONENTS !!
- When found, each stress value is understood as shown in the diagram below.

Combined loading

Normal force $(500 \mathrm{lb})$

Shear force (800 lb)

Bending moment ($8000 \mathrm{lb} \cdot \mathrm{in}$.)

Bending moment (7000 lb•in.)

Torsional moment ($11,200 \mathrm{lb} \cdot \mathrm{in}$.)

Problem 14.11

- The offset link supports the loading shown.
Determine its required width w if the allowable normal stress is 73 MPa . The link thickness is 40mm.

Proh. 14-11

Solution

σ due to axial force

$$
\sigma_{a}=\frac{P}{A}=\frac{30\left(10^{3}\right)}{w(0.04)}=\frac{750\left(10^{3}\right)}{w}
$$

σ due to bending

$$
\begin{aligned}
\sigma_{b}=\frac{M c}{I} & =\frac{30\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)\left(\frac{w}{2}\right)}{\frac{1}{12}(0.04)(w)^{3}} \\
& =\frac{4500\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)}{w^{2}} \\
& \sigma_{\max }=\sigma_{\text {allow }}=\sigma_{a}+\sigma_{b}
\end{aligned}
$$

Solution

$$
73\left(10^{6}\right)=\frac{750\left(10^{3}\right)}{w}+\frac{4500\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)}{w^{2}}
$$

$$
73 w^{2}=0.75 w+0.225+2.25 w
$$

$$
\begin{gathered}
73 w^{2}-3 w-0.225=0 \\
w=0.0797 \mathrm{~m} \\
=79.7 \mathrm{~mm}
\end{gathered}
$$

Problem 14.20

- The bar has a diameter of 40 mm . If it is subjected to a force of 800 N as shown, determine the stress components that act at points A and B and show results on volume elements located at these points.

Prob. 14-20

Solution

$$
\begin{aligned}
& \begin{aligned}
I=\frac{1}{4} \pi r^{4} & =\frac{1}{4}(\pi)\left(0.02^{4}\right) \\
& =0.1256637\left(10^{-6}\right) m^{4} \\
A=\pi r^{2} & =\pi\left(0.02^{2}\right) \\
\quad= & 1.256637\left(10^{-3}\right) \\
Q_{A}=\bar{y}^{\prime} A^{\prime} & =\left(\frac{4(0.02)}{3 \pi}\right)\left(\frac{\pi(0.02)^{2}}{2}\right) \\
& =5.3333\left(10^{-6}\right) m^{3}
\end{aligned} \\
& \mathrm{Q}_{\text {B }}=0
\end{aligned}
$$

Axial stress : Axial extension + Bending

$$
\begin{aligned}
\sigma_{A} & =\frac{P}{A}+\frac{M z}{I}=\frac{400}{1.256637\left(10^{-3}\right)}+0 \\
& =0.318 \mathrm{MPa}
\end{aligned}
$$

Solution

Shear Stress: Only transverse shear

$$
\begin{aligned}
\tau_{A} & =\frac{V Q_{A}}{I t}=\frac{692.82(5.3333)\left(10^{-6}\right)}{0.1256637\left(10^{-6}\right)(0.04)} \\
& =0.735 M P a \\
\sigma_{B} & =\frac{P}{A}-\frac{M c}{I}=\frac{400}{0.1256637\left(10^{-6}\right)}-\frac{138.56(0.02)}{0.1256637\left(10^{-6}\right)} \\
& =-21.7 \mathrm{MPa}
\end{aligned}
$$

Problem 14.25

- The pliers are made from two steel parts pinned together at A.
- If a smooth bolt is held in the jaws and a gripping force of 10lb is applied at the handles, determine the stress components in the pliers at points B and C .

- The cross section is rectangular having dimensions

Prob, 14-25 as shown.

Solution

$$
\begin{aligned}
& \backslash \sum F_{X}=0 \\
& \mathrm{~V}-10 \cos 30=0 \\
& V=8.660 \mathrm{lb} \\
& \sum F_{y}=0 \\
& \mathrm{~N}-10 \sin 30=0 \\
& \mathrm{~N}=5 \mathrm{lb} \\
& \sum \mathrm{M}_{c}=0 \\
& \mathrm{M}-10(3)=0 \\
& I=\frac{1}{12}(0.2)\left(0.4^{3}\right) \\
& =1.0667\left(10^{-3}\right) \\
& Q_{c}=\bar{y}^{\prime} A^{\prime}=(0.1)(0.2)(0.2) \\
& =4\left(10^{-3}\right) i n^{3} \\
& Q_{B}=0 \\
& A=0.2(0.4)=0.08 \mathrm{in}^{2}
\end{aligned}
$$

Solution

$$
\begin{aligned}
\begin{aligned}
\sigma_{B}=\frac{-N}{A}+\frac{M_{y}}{I} & =\frac{-5}{0.08} \frac{30(0.2)}{1.0666\left(10^{-3}\right)} \\
& =5562 \mathrm{psi} \\
& =5.56 \mathrm{ksi}
\end{aligned} \\
\left.\begin{array}{rl}
\tau_{B} & =0 \\
\sigma_{c} & =\frac{-N}{A}+\frac{M_{y}}{I}
\end{array}\right)=\frac{-5}{0.08}=-62.5 \mathrm{psi} \\
\tau_{c}=\frac{V Q_{c}}{I t}=\frac{8.660(4)\left(10^{-3}\right)}{1.0667\left(10^{-3}\right)(0.2)}=162 \mathrm{psi}
\end{aligned}
$$

