EML 3011C
 Mechanics \& Materials Chapter1

Force

FAMU-FSU College of Engineering
Department of Mechanical Engineering Spring 2007

Mechanics

* Concerned with the state of rest or motion of bodies
* Two Branches

Statics

Mechanics of Materials

Mechanics

* Statics

Equilibrium of Bodies

* Mechanics of Materials

Relationship between the external loads, the intensity of internal forces \& its deformation response

Basic Concepts

Quantities

Length (location, position, size)
Time (succession of events)
Force (Push, Pull)
Mass (Properties of Matter)

Idealization

- Particle (neglect, size, geometry)
- Rigid Body (all points within remain in the same position, at fixed distances from each other)
- Concentrated Force (over a very small area, zero)

Basic Concepts (Vector Operations)

* Physical Qualities

Mass, Force, time distance, density,
Temperature, volume, area, length, displacement, velocity, acceleration, weight

Basic Concepts (Vector Operations)

- Scalar Quantities
. Described by their magnitude, mass (italic form) or lower case (a for A)
* Vector Quantities

Described by a magnitude, a direction, and a point of application
(Bold Face) in the book

- Bar or Arrow in handwritten work

- Magnitude $|A|$ or A (italic) or $\mathrm{a}=|A|$

Basic Concepts

* Newton's First Law

A body at rest tends to remain at rest \& a body in motion at a constant velocity will tend to maintain the velocity.

* Newton's Second Law

Change of motion is proportional to the moving force impressed and takes place in the direction of the straight line in which such force is impressed.

Basic Concepts

* Newton's Third Law

When two bodies interact, a pair of equal and opposite reaction forces will exist at their contact point
This force pair will have the same magnitude and acts along the same direction, but have opposite sense
The mutual force of action and reaction between two bodies are equal, opposite, and collinear
$\mathrm{Kg}=$ mass
lbf =forces

Basic Concepts

* Gravitational Law

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

$\mathrm{G}=$ universal constant of gravitation

$$
=66.73 \cdot 10^{-12} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}
$$

$m_{1}, m_{2}=$ mass of each of the two particles
$\mathrm{r}=$ distance

Basic Concepts

* Weight

If $\mathrm{m} 1=$ mass of the particle $\mathrm{m} 2=$ mass of the earth $r=$ distance to the earth's center $\mathrm{W}=$ weight of the particle

$$
W=G \frac{m m_{2}}{r^{2}}
$$

Basic Concepts

* Units

Length, time, mass, force - basic quantities

$$
\bar{F}=m \bar{a}
$$

(Note: we use bars to denote forces or vectors)

* SI (International System of Units)
- Meter (m)
- Second (sec)
. Kilogram (kg)
Newton (N) $\left(\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}\right)$

$$
\begin{aligned}
& W=m g \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Ex: mass = 1kg
$\longrightarrow W=9.81 \mathrm{~N}$

Basic Concepts

* US Customary (FPS : Feet Pounds Seconds)

feet (ft)

second (sec)
Pound (lb)
Slug $\left(\frac{\mathrm{lb} \cdot \mathrm{s}^{2}}{\mathrm{ft}}\right)$

$$
\begin{aligned}
& \mathbf{F}=\mathrm{ma} \\
& 1 \mathrm{lb}=1 \text { slug } \cdot 1 \mathrm{ft} / \mathrm{s}^{2} \Rightarrow \text { slug }=\mathrm{lb} \cdot \mathrm{~s}^{2} / \mathrm{ft}
\end{aligned}
$$

$$
m=\frac{W}{g} \rightarrow 32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

Basic Concepts

Conversion of Units

FPS

SI
Force $1 \mathrm{lb}=4.4482 \mathrm{~N}$
Mass 1 slug
Length 1 ft

$$
\begin{aligned}
& =\quad 14.5938 \mathrm{~kg} \\
& =\quad 0.3048 \mathrm{~m}
\end{aligned}
$$

$$
2 \mathrm{kN} / \mathrm{m}=\frac{2 \mathrm{kN}}{\mathrm{~m}}\left(\frac{1000 \mathrm{~N}}{1 \mathrm{kN}}\right)\left(\frac{1 \mathrm{lb}}{4.4482 \mathrm{~N}}\right)\left(\frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}\right)
$$

Chapter 2

*Force Vectors

Scalars : A quantities represented be a number (positive or negative)
Ex: Mass, Volume, Length
(in the book scalars are represented by italics)
Vectors : A quantity which has both
A - magnitude (scalar)
B - direction (sense)
Ex: position, force, moment

Chapter 2

- Classification of Forces

Contact
1 - Contacting or surface forces (mechanical)
2 - Non-Contacting or body forces (gravitational, weight)
Area
1 - Distributed Force, uniform and non-uniform
2 - Concentrated Force

Chapter 2

* Classification of Forces

- Force System

1 - Concurrent : all forces pass through a point
2 - Coplanar : in the same plane
3 - Parallel : parallel line of action
4 - Collinear : common line of action
Three Types
1 - Free (direction, magnitude \& sense)
2 - Sliding
3 - Fixed

Chapter 2

* Properties of Vectors

1 - Vector Addition
2 - Vector Subtraction
3 - Vector Multiplication

Chapter 2

Vector Addition

$$
\bar{R}=\bar{A}+\bar{B}=\bar{B}+\bar{A}
$$

$$
\bar{R}=\bar{A}+\bar{B}+\bar{C}
$$

Chapter 2

Vector Subtraction

$$
\bar{A}-\bar{B}=\bar{A}+(-\bar{B})
$$

Methodology

- Use of a Parallelogram A - sum of the three angles is 180°
B - sum of the interior angles is 360°

$$
\mathrm{C}-\begin{aligned}
& \alpha+\beta=180 \\
& \alpha=\gamma
\end{aligned}
$$

Methodology

-Trigonometry

$$
\text { A - Sin Law } \quad \frac{A}{\sin \alpha}=\frac{B}{\sin \beta}=\frac{C}{\sin \gamma}
$$

B - Cosine Law
$C^{2}=A^{2}+B^{2}-2 A B \cos C$

Methodology

Ex: If the bottom angle between $F_{1}=54 \mathrm{~N}$ $\& F_{2}=60 \mathrm{~N}$ is 60°. Find the Resultant force \& the angle β.

Methodology

$$
\begin{aligned}
& R^{2}=F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2} \cos \phi \\
& R^{2}=60^{2}+54^{2}-2 \cdot 60 \cdot 54 \cdot \cos (120) \\
& |R|=98.77 \approx 98.8 N
\end{aligned}
$$

$$
\frac{\sin \beta}{F_{1}}=\frac{\sin 120}{R}
$$

$$
\sin \beta=\frac{F_{1}}{R} \sin 60
$$

$$
\beta=28.26^{\circ}
$$

Methodology

Vector Multiplication

$$
\begin{aligned}
& (m+n) \vec{A}=m \vec{A}+n \vec{A} \\
& m(\vec{A}+\vec{B})=m \vec{A}+m \vec{B} \\
& m(n \vec{A})=m n \vec{A}
\end{aligned}
$$

Unit Vector : a vector with a unit magnitude

$$
\begin{aligned}
& \vec{A}=|A| \hat{e_{n}} \\
& \hat{e}_{n}=\frac{\vec{A}}{|A|}
\end{aligned}
$$

Coordinate Systems

- Cartesian

Simplification of Vector Analysis

Right Handed Coordinate System

。 If the thumb of the right hand points in the direction of the positive z-axis when the fingers are pointed in the x-direction \& curled from the x axis to the y-axis. Imagine pushing the x-axis into the y-axis

Coordinate Systems

* Cartesian (Rectangular) Components of a Vector Z In 3-D

$$
\bar{A}=\overline{A_{x}}+\overline{A_{y}}+\overline{A_{z}} \quad \mathrm{Az}
$$

Ay

$$
\bar{A}=\overline{A_{x}}+\overline{A_{y}}
$$

Coordinate Systems

* Cartesian Unit Vectors

$$
\begin{aligned}
& \overrightarrow{A_{x}}=\left|A_{x}\right| \hat{i} \\
& \overrightarrow{A_{y}}=\left|A_{y}\right| \hat{j} \\
& \overrightarrow{A_{z}}=\left|A_{z}\right| \hat{k}
\end{aligned} \quad \Rightarrow \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{x} \hat{k}{ }^{\hat{k}}
$$

Coordinate Systems

* Magnitude of a Cartesian Vector

$$
|A|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \quad \mathrm{Az}{ }^{\mathrm{z}}
$$

Force Analysis

* Force is treated like any vector!

$$
\begin{aligned}
& F_{x}=F \cos \theta_{x} \\
& F_{y}=F \cos \theta_{y} \\
& F_{z}=F \cos \theta_{z}
\end{aligned}
$$

Force Analysis

$F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} \quad$ magnitude
$\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \quad$ Cartesian
$\vec{F}=F \cos \theta_{x} \hat{i}+F \cos \theta_{y} \hat{j}+F \cos \theta_{z} \hat{k}$
$\vec{F}=F\left(\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k}\right)$
$\hat{U}_{f}=\cos \theta_{x} \hat{i}+\cos \theta_{y} \hat{j}+\cos \theta_{z} \hat{k} \quad$ direction
$\vec{F}=F \hat{U}_{f} \quad$ magnitude and direction

Force Analysis

$F_{x}=F \cos \theta_{x}=600 \frac{6}{14.14}=254 l b$
$F_{y}=F \cos \theta_{y}=600 \frac{10}{14.14}=424 l b$
$F_{z}=F \cos \theta_{z}=600 \frac{8}{14.14}=339 \mathrm{lb}$
$F=(255 \hat{i}+424 \hat{j}+339 \hat{k}) l b$
Use geometry to get direction !!

Summary of (vector) Force Analysis Z

Fz

$$
\begin{aligned}
& \bar{F}=\overline{F_{x}}+\overline{F_{y}}+\overline{F_{z}} \\
& =F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \\
& =F \cos \theta_{x} \hat{i}+F \cos \theta_{y} \hat{j}+F \cos \theta_{z} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}=F \cos \theta_{x} \\
& F_{y}=F \cos \theta_{y} \\
& F_{z}=F \cos \theta_{z}
\end{aligned}
$$

Fx

$$
\theta_{x}=\cos ^{-1} \frac{F_{x}}{F}
$$

$$
\theta_{y}=\cos ^{-1} \frac{F_{y}}{F}
$$

$$
\theta_{z}=\cos ^{-1} \frac{F_{z}}{F}
$$

Remember
$\operatorname{Cos}^{2} \theta_{x}+\operatorname{Cos}^{2} \theta_{y}+\operatorname{Cos}^{2} \theta_{z}=1$
(Prove)

Components of the force

$$
\begin{aligned}
& F_{n}=\vec{F} \cdot \hat{e}_{n} \\
& =\left(F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k}\right) \cdot \hat{e}_{n}
\end{aligned}
$$

-make sure that e_{n} is a unit vector.

$$
\hat{e}_{n}=\cos \theta_{x} i+\cos \theta_{y} j+\cos \theta_{z} k
$$

Components of the force

$$
F_{n}=\vec{F} \cdot \hat{e}_{n}=F_{x} \cos \theta_{x}^{\prime}+F_{y} \cos \theta_{y}^{\prime}+F_{z} \cos \theta_{z}^{\prime}
$$

Direction

$$
=F_{n}\left(\cos \theta_{x}^{\prime} \hat{i}+\cos \theta_{y}^{\prime} \hat{j}+\cos \theta_{z}^{\prime} \hat{k}\right)
$$

Question

What is the angle between $\bar{F} \& \hat{e}_{n}$???

$$
\begin{aligned}
& \bar{F} \cdot \hat{e}_{n}=|F||1| \cos \alpha \Rightarrow \alpha=\cos ^{-1} \frac{|\bar{F}| \cdot \hat{e}_{n}}{|F|} \\
& F \cdot \hat{e}_{n}=F \cos \alpha \Rightarrow \alpha=\cos ^{-1} \frac{F_{n}}{F}
\end{aligned}
$$

Dealing with many forces ... why we need vector operations!

$$
\begin{aligned}
& \overrightarrow{\mathrm{R}}_{\mathrm{x}}=\sum \mathrm{F}_{\mathrm{x}}=\mathrm{R}_{\mathrm{x}} \hat{\mathrm{i}} \\
& \overrightarrow{\mathrm{R}} \mathrm{y}=\sum \mathrm{F}_{\mathrm{y}}=\mathrm{R}_{\mathrm{y}} \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{R}}_{\mathrm{z}}=\sum \mathrm{F}_{\mathrm{z}}=\mathrm{R}_{\mathrm{z}} \hat{\mathrm{k}}
\end{aligned}
$$

Position Vectors

$$
\vec{r}=\overrightarrow{r_{B}}-\overrightarrow{r_{A}}
$$

$$
\begin{aligned}
& \overrightarrow{r_{B}}=x_{B} \hat{i}+y_{B} \hat{j}+z_{B} \hat{k} \\
& \overrightarrow{r_{A}}=x_{A} \hat{i}+y_{A} \hat{j}+z_{A} \hat{k}
\end{aligned}
$$

$$
\vec{r}=\left(x_{B}-x_{A}\right) \hat{i}+\left(y_{B}-y_{A}\right) \hat{j}+\left(z_{B}-z_{A}\right) \hat{k}
$$

-Position vectors can be determined using the coordinates of the end \& beginning of the vector. Note: from A to B is $r_{B}-r_{A}$

Force Vector Along a Line

A force may be represented by a magnitude \& a position
Force \vec{F} is oriented along the vector $A B$ (line $A B$)

$$
\begin{aligned}
& \vec{F}=|F| u_{A B} \\
& u_{A B}=\text { Unit vector along }_{\text {the line } A B} \\
& =\frac{\overrightarrow{A B}}{|A B|} \\
& \vec{F}=|F| \frac{\overrightarrow{A B}}{|A B|}
\end{aligned}
$$

Vector Multiplication (Cartesian)

Dot Product (Scalar Product)

$\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}=\overline{\mathrm{B}} \cdot \overline{\mathrm{A}}=\mathrm{AB} \cos \theta$

$\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cdot \mathrm{i}=\mathrm{A}(1) \cos \theta$

$$
\begin{aligned}
& \bar{A}=A_{x} \bar{i}+A_{y} \bar{j}+A_{z} \bar{k} \\
& \bar{B}=B_{x} \bar{i}+B_{y} \bar{j}+B_{z} \bar{k} \\
& \bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Problem *Using the equation $\mathrm{A} . \mathrm{B}=\mathrm{AB} \cos \theta$ If

$$
\begin{aligned}
& \bar{A}=2 i+2 j+k \\
& \bar{B}=-i+j+k
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \\
& \overline{\mathrm{i}} \cdot \overline{\mathrm{j}}=
\end{aligned}
$$

$$
\text { b) } \bar{A} \cdot \bar{A}
$$

$$
\text { c) Angle } \theta
$$

Solution

$$
\bar{A} \cdot \bar{B}=(-2+2+1)=(4+4+1)^{1 / 2}(1+1+1)^{1 / 2} \cos \theta
$$

$$
+1=3 \sqrt{3} \cos \theta
$$

$$
\cos \theta=\frac{1}{3 \sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{9}
$$

$$
\theta=\cos ^{-1} \frac{\sqrt{3}}{9}
$$

Application of Dot Product

Component of a Vector along a line

$$
\begin{aligned}
& \mathrm{A}_{\|}=\mathrm{A} \cos \theta \\
& =\overline{\mathrm{A}} \cdot \hat{\mathrm{U}} \\
& \overline{\mathrm{~A}_{\|}}=\mathrm{A} \hat{\mathrm{U}}=(\overline{\mathrm{A}} \cdot \hat{\mathrm{U}}) \hat{\mathrm{U}} \\
& \overline{\mathrm{~A}_{\perp}}=\overline{\mathrm{A}}-\overline{\mathrm{A}_{\dagger}} \\
& \mathrm{A}_{\perp}=\mathrm{A} \sin \theta
\end{aligned}
$$

Application of dot product

Angle between two vectors

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos \theta
$$

$$
\theta=\cos ^{-1}\left(\frac{\overline{\mathrm{~A}} \overline{\mathrm{~B}}}{\mathrm{AB}}\right)
$$

