
EML 3011CEML 3011C
Mechanics & MaterialsMechanics & Materials

Chapter1Chapter1

ForceForce

FAMU-FSU College of Engineering

Department of Mechanical Engineering

Spring 2007



Mechanics

�Concerned with the state of rest or 
motion of bodies

�Two Branches
� Statics
� Mechanics of Materials



Mechanics

�Statics
� Equilibrium of Bodies

�Mechanics of Materials
� Relationship between the external loads, 

the intensity of internal forces & its 
deformation response



Basic Concepts

Quantities
� Length (location, position, 

size)
� Time (succession of events)
� Force (Push, Pull)
� Mass (Properties of Matter)

Idealization
� Particle (neglect, size, 

geometry)
� Rigid Body (all points within 

remain in the same position, at 
fixed distances from each 
other)

� Concentrated Force ( over a 
very small area, zero)



Basic Concepts 
(Vector Operations)

�Physical Qualities

� Mass, Force, time distance, density, 

Temperature, volume, area, length, 

displacement, velocity, acceleration, weight



� Scalar Quantities
� Described by their magnitude, mass
� (italic form) or lower case (a for A)

� Vector Quantities
� Described by a magnitude, a direction, and a point of 

application
� (Bold Face) in the book
� Bar or Arrow in handwritten work
� Magnitude       or A (italic) or a =

Basic Concepts 
(Vector Operations)
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Basic Concepts
�Newton’s First Law

� A body at rest tends to remain at rest & a 
body in motion at a constant velocity will 
tend to maintain the velocity.

�Newton’s Second Law
� Change of motion is proportional to the 

moving force impressed and takes place in 
the direction of the straight line in which 
such force is impressed.

amF =



Basic Concepts
� Newton’s Third Law

� When two bodies interact, a pair of equal and 
opposite reaction forces will exist at their contact 
point

� This force pair will have the same magnitude and 
acts along the same direction, but have opposite 
sense

� The mutual force of action and reaction between 
two bodies are equal, opposite, and collinear

Kg = mass
lbf =forces



�Gravitational Law

G = universal constant of gravitation

m1,m2 = mass of each of the two particles
r= distance

Basic Concepts
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�Weight
If m1 = mass of the particle

m2 = mass of the earth
r = distance to the earth’s center
W = weight of the particle

if 
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� SI (International System of 
Units)

� Meter (m)
� Second (sec)
� Kilogram (kg)
� Newton (N)

Ex : mass = 1kg 
W = 9.81N

Basic Concepts
� Units

� Length, time, mass, 
force – basic 
quantities

(Note: we use bars to 
denote forces or 
vectors)

amF =
kg ⋅ m
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Basic Concepts
� US Customary ( FPS : Feet Pounds Seconds)

� feet (ft) 
� second (sec)
� Pound (lb)

� Slug

F = ma
1 lb = 1 slug

lb ⋅ s2

ft
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Basic Concepts

�Conversion of Units
FPS SI

Force 1 lb = 4.4482 N
Mass 1 slug = 14.5938 kg

Length 1 ft = 0.3048 m
Ex:

2kN
m=

2kN

m

1000N

1kN
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1lb

4.4482N
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0.3048m
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Chapter 2
�Force Vectors

� Scalars : A quantities represented be a 
number (positive or negative)

Ex: Mass, Volume, Length
(in the book scalars are represented by italics)

� Vectors : A quantity which has both
A – magnitude (scalar)
B – direction (sense)
Ex: position, force, moment

Line of action

Magnitude Sense



Chapter 2

�Classification of Forces
� Contact

1 – Contacting or surface forces (mechanical)
2 – Non-Contacting or body forces (gravitational, 

weight)

� Area
1 – Distributed Force, uniform and non-uniform
2 – Concentrated Force



� Classification of Forces
� Force System

1 – Concurrent : all forces pass through a point
2 – Coplanar : in the same plane
3 – Parallel : parallel line of action
4 – Collinear : common line of action

� Three Types
1 – Free (direction, magnitude & sense)
2 – Sliding 
3 – Fixed 

θ
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Chapter 2



Chapter 2

�Properties of Vectors
1 – Vector Addition

2 – Vector Subtraction
3 – Vector Multiplication



Chapter 2

Vector Addition
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Chapter 2
Vector Subtraction
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�Use of a Parallelogram
� A – sum of the three angles is 180o

� B – sum of the interior angles is 360o

� C –

Methodology

γα
βα
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Methodology

�Trigonometry
� A – Sin Law

� B – Cosine Law

γβα sinsinsin

CBA ==

CABBAC cos2222 −+=
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Methodology

Ex: If the bottom angle between F1 = 54N 
& F2 = 60N is 60o. Find the Resultant 
force & the angle β.

β

RF1

F2

120o

60o



Methodology
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Methodology
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Vector Multiplication 

Unit Vector : a vector with a unit magnitude
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Coordinate Systems

�Cartesian
� Simplification of Vector Analysis
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Right Handed Coordinate System
� If the thumb of the right hand points in the 

direction of the positive z-axis when the fingers 
are pointed in the x-direction & curled from the x-
axis to the y-axis.

� Imagine pushing the x-axis into the y-axis

x

y

z



Coordinate Systems

�Cartesian (Rectangular) Components of 
a Vector

zyx AAAA ++=

y

A

Ay

Ax

Az
z

x

y

A
Ay

Ax x

In 2-D
yx AAA +=

In 3-D



Coordinate Systems

�Cartesian Unit Vectors
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Coordinate Systems

�Magnitude of a Cartesian Vector
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Force Analysis

�Force is treated like any vector!
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Force Analysis
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Force Analysis Ex:
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Summary of (vector) Force Analysis
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Components of the force
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Components of the force
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Question

What is the angle between       
neF ˆ&

F
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Dealing with many forces … why 
we need vector operations!

Rx = Fx = Rx
ˆ i ∑

Ry = Fy = Ry
ˆ j ∑

Rz = Fz = Rz
ˆ k ∑



Position Vectors
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( xa, ya, 
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(xb, yb, 
zb)

•Position vectors can be determined using 
the coordinates of the end & beginning of 
the vector. Note: from A to B is rB-rA
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Force        is oriented along the 
vector AB (line AB)

Force Vector Along a Line
A force may be represented by a magnitude & 
a position
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θ
B

A

Vector Multiplication 
(Cartesian)
Dot Product (Scalar Product)
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�Using the equation
Problem

i
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a )
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c) Angle θ

A.B=ABcosθ

�Find



Solution
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Application of Dot Product
Component of a Vector along a line

θ

A n

A

A

A = A cosθ

= A ⋅ ˆ U 

A = A ˆ U = ( A ⋅ ˆ U ) ˆ U 

A = A − A

A = A sin θ



Application of dot product
Angle between two vectors

θ

A

B

A ⋅ B = ABcosθ

θ = cos−1 AB

AB
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