EML 3011C Mechanics & Materials Chapter1

FAMU-FSU College of Engineering Department of Mechanical Engineering Spring 2007

Mechanics

Concerned with the state of rest or motion of bodies
Two Branches
Statics
Mechanics of Materials

Mechanics

Statics
Equilibrium of Bodies
Mechanics of Materials
Relationship between the external loads, the intensity of internal forces & its deformation response

Quantities

- Length (location, position, size)
- Time (succession of events)
- Force (Push, Pull)
- Mass (Properties of Matter)

Idealization

- Particle (neglect, size, geometry)
- Rigid Body (all points within remain in the same position, at fixed distances from each other)
- Concentrated Force (over a very small area, zero)

Basic Concepts (Vector Operations)

- Scalar Quantities
 - Described by their magnitude, mass
 - (*italic form*) or lower case (a for A)
- Vector Quantities
 - Described by a magnitude, a direction, and a point of application

R

R

- (Bold Face) in the book
- Bar or Arrow in handwritten work A,A
- Magnitude |A| or A (*italic*) or a = |A|

- Newton's First Law
 - A body at rest tends to remain at rest & a body in motion at a constant velocity will tend to maintain the velocity.

Newton's Second Law

Change of motion is proportional to the moving force impressed and takes place in the direction of the straight line in which such force is impressed.

$$\overline{F} = m\overline{a}$$

- Newton's Third Law
 - When two bodies interact, a pair of equal and opposite reaction forces will exist at their contact point
 - This force pair will have the same magnitude and acts along the same direction, but have opposite sense
 - The mutual force of action and reaction between two bodies are equal, opposite, and collinear

Kg = mass lbf =forces

Gravitational Law

G = universal constant of gravitation

 $= 66.73 \cdot 10^{-12} \frac{m^3}{kg \cdot s^2}$ m₁,m₂ = mass of each of the two particles r= distance

Weight
 If m1 = mass of the particle
 m2 = mass of the earth
 r = distance to the earth's center
 W = weight of the particle

$$W = G \frac{mm_2}{r^2}$$

if $g = \frac{Gm_2}{r^2} \longrightarrow W = mg$

Units

 Length, time, mass, force – basic quantities

 $\overline{F} = m\overline{a}$

(Note: we use bars to denote forces or vectors)

- SI (International System of Units)
 - Meter (m)
 - Second (sec)
 - Kilogram (kg)

Newton (N) (kg·m)

W = mg $g = 9.81 m/s^2$

Ex : mass = 1kg \longrightarrow W = 9.81N

US Customary (FPS : Feet Pounds Seconds)
 feet (ft)
 second (sec)
 Pound (lb)

Slug $\left(\frac{1b}{f}\right)$

F = ma

1 lb = 1 slug $\cdot 1 ft/s^2 \Rightarrow slug = lb \cdot s^2/ft$

$$m = \frac{W}{g} \rightarrow 32.2 \text{ ft/s}^2$$
$$g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$$

$$2^{k} N_{m} = \frac{2kN}{m} \left(\frac{1000N}{1kN}\right) \left(\frac{11b}{4.4482N}\right) \left(\frac{0.3048m}{1ft}\right)$$

Force Vectors

Scalars : A quantities represented be a number (positive or negative)

 Ex: Mass, Volume, Length (in the book scalars are represented by italics)

 Vectors : A quantity which has both

 A – magnitude (scalar)
 B – direction (sense)
 Ex: position, force, moment

Magnitude

Sense

Classification of Forces Contact Contacting or surface forces (mechanical) Non-Contacting or body forces (gravitational, weight)

Area

- 1 Distributed Force, uniform and non-uniform
- 2 Concentrated Force

Classification of Forces

- Force System
 - 1 Concurrent : all forces pass through a point
 - 2 Coplanar : in the same plane
 - 3 Parallel : parallel line of action
 - 4 Collinear : common line of action

Three Types

- 1 Free (direction, magnitude & sense)
- 2 Sliding
- 3 Fixed

Origin $\stackrel{0}{0}$

θ

Properties of Vectors
 1 – Vector Addition
 2 – Vector Subtraction
 3 – Vector Multiplication

Vector Addition

Use of a Parallelogram
A – sum of the three angles is 180°
B – sum of the interior angles is 360°

α

$$\mathbf{C} - \alpha + \beta = 180$$
$$\alpha = \gamma$$

Trigonometry
A – Sin Law

$$\frac{A}{\sin\alpha} = \frac{B}{\sin\beta} = \frac{C}{\sin\gamma}$$

• B – Cosine Law $C^2 = A^2 + B^2 - 2AB\cos C$

Ex: If the bottom angle between $F_1 = 54N$ & $F_2 = 60N$ is 60°. Find the Resultant force & the angle β .

$$R^{2} = F_{1}^{2} + F_{2}^{2} - 2F_{1}F_{2}\cos\phi$$
$$R^{2} = 60^{2} + 54^{2} - 2 \cdot 60 \cdot 54 \cdot \cos(120)$$
$$|R| = 98.77 \approx 98.8N$$

$$\frac{\sin \beta}{F_1} = \frac{\sin 120}{R}$$
$$\sin \beta = \frac{F_1}{R} \sin 60$$
$$\beta = 28.26^{\circ}$$

Methodology Vector Multiplication

$$(m+n)\vec{A} = m\vec{A} + n\vec{A}$$
$$m(\vec{A} + \vec{B}) = m\vec{A} + m\vec{B}$$
$$m(n\vec{A}) = mn\vec{A}$$

Unit Vector : a vector with a unit magnitude

 $\stackrel{\mathsf{A}}{\mathsf{e}_{\mathsf{r}}}$

A

$$\vec{A} = |A| \vec{e}_n$$
$$\vec{e}_n = \frac{\vec{A}}{|A|}$$

Cartesian

Ζ

Х

k

Simplification of Vector Analysis

Χ

V

Ζ

θzA

 $\theta_{\rm X}$

e_

θ

n

y

Right Handed Coordinate System

 If the thumb of the right hand points in the direction of the positive z-axis when the fingers are pointed in the x-direction & curled from the xaxis to the y-axis.

Imagine pushing the x-axis into the y-axis

Ζ

X

 $A = A_x + A_y + A_z$

Χ

Ax

 Cartesian (Rectangular) Components of a Vector

In 3-D

Ay

Az

Cartesian Unit Vectors

 $A_x = A_x i$

Χ

k

 $A = Ae_n$

 $A_v = A_v \mathbf{j}$

Magnitude of a Cartesian Vector

Force Analysis

Force is treated like any vector!

Force Analysis

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2} \text{ magnitude}$$

$$\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k} \text{ Cartesian}$$

$$\vec{F} = F \cos \theta_x \hat{i} + F \cos \theta_y \hat{j} + F \cos \theta_z \hat{k}$$

$$\vec{F} = F(\cos \theta_x \hat{i} + \cos \theta_y \hat{j} + \cos \theta_z \hat{k})$$

$$\hat{U}_f = \cos \theta_x \hat{i} + \cos \theta_y \hat{j} + \cos \theta_z \hat{k} \text{ direction}$$

$$\vec{F} = F \hat{U}_f \text{ magnitude and direction}$$

Force Analysis

$$F = 600$$

$$f = \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{6^2 + 10^2 + 8^2}$$

$$= 14.14 ft$$

$$F_x = F \cos \theta_x = 600 \frac{6}{14.14} = 254 lb$$

$$F_y = F \cos \theta_y = 600 \frac{10}{14.14} = 424 lb$$

$$F_z = F \cos \theta_z = 600 \frac{8}{14.14} = 339 lb$$

$$F = (255 \hat{i} + 424 \hat{j} + 339 \hat{k}) lb$$

Components of the force

→ F

Ζ

^ e ê_n

У

$$F_{n} = \overrightarrow{F} \cdot \hat{e}_{n}$$
$$= \left(F_{x}\hat{i} + F_{y}\hat{j} + F_{z}\hat{k}\right) \cdot \hat{e}_{n}$$

-make sure that e_n is a unit vector.

$$\hat{e}_n = \cos\theta_x i + \cos\theta_y j + \cos\theta_z k$$

$$F_n = F \cdot \hat{e}_n = F_x \cos \theta'_x + F_y \cos \theta'_y + F_z \cos \theta'_z$$

Magnitude

Direction

F

Fn

ê_n

$$=F_{n}\left(\cos\theta_{x}^{\prime}\hat{i}+\cos\theta_{y}^{\prime}\hat{j}+\cos\theta_{z}^{\prime}\hat{k}\right)$$

Question

What is the angle between $F \& \hat{e}_n$???

 $\overline{F} \cdot \hat{e}_n = |F|| 1 |\cos \alpha \Rightarrow \alpha = \cos^{-1} \frac{|F| \cdot \hat{e}_n}{|F|}$

 $F \cdot \hat{e}_n = F \cos \alpha \Longrightarrow \alpha = \cos^{-1} \frac{F_n}{F}$

Dealing with many forces ... why we need vector operations!

 $\mathbf{R}_{\mathbf{x}} = \sum F_{\mathbf{x}} = \mathbf{R}_{\mathbf{x}} \mathbf{i}$ $\mathbf{R}_{v}^{\bullet} = \sum F_{v} = \mathbf{R}_{y}\hat{\mathbf{j}}$ $\mathbf{R}_{z} = \sum \mathbf{F}_{z} = \mathbf{R}_{z}\hat{\mathbf{k}}$

X

Problem • Using the equation A.B=ABcos θ If $\overline{A} = 2i + 2j + k$ $\overline{B} = -i + j + k$

Find

a)

$$i \cdot j =$$

 $i \cdot k =$
 $j \cdot k =$
 $j \cdot j =$
 $i \cdot i =$
 $\overline{k} \cdot \overline{k} =$

k

b)
$$\overline{A} \cdot \overline{A}$$

c) Angle θ

Solution

 $\overline{A} \cdot \overline{B} = (-2 + 2 + 1) = (4 + 4 + 1)^{\frac{1}{2}} (1 + 1 + 1)^{\frac{1}{2}} \cos\theta$ $+1=3\sqrt{3}\cos\theta$ $\cos\theta = \frac{1}{3\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{9}$ $\theta = \cos^{-1} \frac{\sqrt{3}}{9}$

Application of Dot Product

 $\mathbf{A}_{\mathbf{I}}$

Component of a Vector along a line

Application of dot product

Angle between two vectors

 $\vec{A} \cdot \vec{B} = AB\cos\theta$ $\theta = \cos^{-1}$

