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ABSTRACT 
Past research has shown that intersections are particularly difficult for older drivers to negotiate. 
To investigate potential contributing factors, standard database elements were paired with visual 
inspections of video log images to evaluate factors such as visual clutter, approach sight 
distances, and the condition and visibility of pavement markings.  For comparative purposes, the 
paper also examines the effect of the same factors on crashes in which non-elderly drivers were 
found to be at fault.  The study set includes all intersections on state roads in Florida that had 
undergone at least one fatal traffic crash in the year 2000, primarily because of information 
available from a companion study.  Thirty-two independent variables were selected to describe 
the roadway geometrics, traffic characteristics, pavement, signage, and control devices.  A 
variety of regression models were investigated, and best-fit measures, including Akaike and 
Bayesian Information Criteria, favored negative binomial models reduced by forward stepwise 
selection for both elder and non-elder crashes.   

Fourteen variables were found to have significant effect on crash likelihood.  Major 
operation and design aspects, such as high traffic counts and absence of signalization and 
medians, appear to be much more significant measures of crash likelihood for both older and 
younger drivers than other features or enhancements.  Older drivers had more crashes when 
pavements were not marked with advanced lane assignment marking and when skid resistance 
was lower.  However, younger drivers were more prone to traffic crashes at intersections with 
lower sign reflectivity and hanging signals, factors which did not impact older drivers.  Further, 
several qualitative safety features, including advanced warning signs recommended by the 
Florida Elder Road User Program, had greater impacts on non-elderly drivers.  Potentially 
counter-intuitive results, such as decreased crash likelihoods with higher speed limits, decreased 
turning sight distances, and presence of raised pavement markings, might be caused by self-
limiting behavior among drivers when presented with safety concerns; however, additional 
research is recommended.   
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1.  INTRODUCTION 
Florida has a unique population with 18 percent of its population age 65 and older. It is also 
projected that by the year 2020, one in four Florida residents will be 65 and older (Florida, 
1999). Mobility needs are very crucial for senior citizens and for many, the automobile is the 
primary means to fulfill these needs. Therefore, it is vital to explore age as a factor in traffic 
crashes.  Research has shown differences in driver performance among different age groups. 
Advanced driver age can cause impairment in sensory capacity, motor and psychomotor 
capacity, as well as cognitive capacity (Staplin, 1999). As a result, driver age can affect many 
aspects of the driving task, including perception-reaction time, responses to movement of other 
vehicles, responses to traffic devices, handling of hazards in the roadway, and control movement 
time (Staplin, 1997). 

Ideas to minimize traffic crashes involving older drivers include larger street signs, 
advanced signage, and intersection design and signalization that decreases reliance on judgment 
in making left turns (e.g. protected left turns, roundabouts, etc.).  Many of these design and 
operational guidelines were included the Florida Elder Road User Program (FERUP), a Florida 
Department of Transportation sponsored program designed to help seniors maintain their 
mobility and provide a safer system in which they can travel (Florida, 1999). Several 
countermeasures recommended by this program have been implemented to various degrees 
throughout Florida. Other design details and operational characteristics, such as type and 
alignment of signal heads, use of medians and/or turn lanes, and number of informational and 
warning signs may have either a positive or negative effect on elder driver safety.   

It is important to explore these factors, some of which are quantifiable and some of which 
are more subjective in nature, and their effects on intersection safety and the number of elder 
driver crashes.  In addition to the standard data elements available from databases such as the 
Florida Department of Transportation’s (FDOT’s) Roadway Characteristics Inventory (RCI) 
database, video log images and other data sources were used to conduct visual inspections of 
intersections in the study set to evaluate factors such as visual clutter, approach sight distances, 
and the condition and visibility of pavement markings.  The goal of this study was to determine 
which factors have the largest impact on elder driver intersection crashes and consider which 
intersection improvements might be the most effective countermeasures in reducing crash rates 
among older drivers.  For comparative purposes, the paper also examines the effect of the same 
factors on crashes in which non-elderly drivers were found to be at fault.   

1.1.  Related Research  
Older drivers have low crash rates per capita. However, when exposure is taken into 

account, they have among the highest crash rates per mile (Owsley, 2004).  Intersections are 
particularly difficult for older drivers to negotiate.  About half of fatal crashes involving drivers 
80 years and older occur at intersections and involve more than one vehicle. This compares with 
23 percent among drivers up to age 50 (Isler, 1997).  Because of the high crash rates involving 
older drivers, and because of the high fatality rates of older drivers involved in traffic crashes, 
these crashes have been the focus of important research efforts, several of which are detailed 
here.  

At-grade intersections have the highest probability of conflict between vehicles. A 
number of related studies have shown that sight distance problems at intersections usually result 
in a higher crash rate (David and Norman, 1979).  This is especially true of the left turn 
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maneuver from minor road onto a major road at a stop-controlled intersection. A study by 
Skyving, Berg, and Laflamme (2009) reinforced previous studies (Richardson and Marottoli, 
2003; Lyman et al, 2002) indicating that negotiating intersections can be problematic for older 
drivers, even when traffic is not that fast moving.  This Swedish study found that two of four 
major crash classes responsible for elder driver fatalities involved large numbers of left-turn 
crashes at intersections and driveways on low- and moderate-speed roadways.   

The angle at which intersecting roads meet is an important consideration in the design of 
roadway facilities. Intersections at an angle other than 90 degrees may require greater head 
movement to provide the necessary sight distance. This motion is particularly troublesome for 
older drivers, many of whom experience a decline in head and neck mobility (Isler et al, 1997). 
Federal Highway Administration guidelines for highway designs accommodating older drivers 
recommend that skew at intersections be limited to angles no greater than 75 degrees, and that 
skew should be eliminated if right-of-way is not a concern (Staplin, 2001). 

Improper or faded roadway markings can result in crashes because older drivers can be 
confused about the markings. Improved delineation can be accomplished through higher 
standards for retro-reflective pavements markings, more frequent repainting of edges and center 
lines, and the use of raised pavements markers (RPM’s) and other marking treatments, especially 
in areas of alignment changes or lane drops. Staplin, et al (1997) found that older drivers need 
pavement markings that are anywhere from 30 to 300 percent more retro-reflective than younger 
drivers. 

Some researchers have suggested that sign conspicuity and comprehensibility can be 
difficult for older drivers.  Internal contrast is the difference between the luminance of the sign 
copy and its background. Sturr, Kline, and Taub (1990) studied the static acuity of younger (ages 
18 to 25) and older (ages 60 to 87) persons under varying luminance levels ranging from day to 
night vision. Their findings showed there is very little differentiation between age groups at the 
highest level of illumination, but at lower illumination levels, older persons were at a 
disadvantage.  Scialfa et al (2008) found that healthy older adults were generally good at sign 
comprehension but had difficulty with way-finding signs, while older adults with cognitive 
impairment had poorer sign comprehension overall and particular difficulty with way-finding 
icons and signs that had icons only. 

External contrast is the difference between the luminance of the sign and that of the area 
immediately surrounding the sign. As the sign’s external contrast ratio increases, so does the 
sign’s conspicuity. External contrast may be negatively affected by visual clutter in the scene.  
Ho et al (2001) found that the ability to locate traffic signs embedded in digitized images of 
driving scenes declined with increased clutter and with aging.  However, the effect of increased 
clutter had less effect on older drivers relative to the young.  

Other studies have found that older drivers do not have increasing difficult in detecting 
and understanding road signs, possibly because they are able to compensate for age-related 
vision decline.  Kline et al (1999) found that older observers were better than younger ones in 
identifying defocused (optically blurred) text in both daytime and nighttime conditions.  Schnell, 
Aktan, and Li (2004) also found no significant differences in the ability of older and younger 
drivers to recognize various negative contrast symbol signs (black on yellow) under low 
adaptation luminance conditions, regardless of background complexity. 
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1.2.  Florida Elder Road User Program 
In 1989, in response to the needs of Florida’s growing elderly population, Florida participated in 
a federal pilot program studying the effect of certain roadway improvements on the driving skills 
of the elderly in those areas. During the pilot program, the suggested roadway improvements 
were implemented within 22 counties that had a high senior population (Florida, 1999). In 1992, 
FDOT introduced Florida's Elder Road User Program (FERUP) state-wide, adopting the 
recommendations of various federal studies (TRB, 1988; TRB, 1989).  Goals of the program, 
which was renamed the Safe Mobility for Life Program in 2007, were to aid seniors in 
maintaining their mobility and to provide a safer system in which they could travel. To combat 
the loss of driving skills due to the natural affects of aging, especially those skills affecting visual 
capability and decision-making, implementation of these improvements began state-wide. These 
improvements were aimed at providing better guidance along roadways, more legible signs and 
increased advance warning of upcoming traffic and roadway conditions (Florida, 1999).   

The implementation plan included a number of short- and long-term improvements.  
Various aspects of the FERUP and other roadway improvements were installed on the State 
Highway System (FDOT jurisdiction) within two years of the pilot study (1991); however, not 
all intersections on state or local roads are currently 100% compliant. The roadway and traffic 
operations goals of the program were: 
 

 Increased visibility 
o Increased lane and edge line pavement marking widths to 6 inches 
o Use of raised pavement markers (RPMs) 
o Use of larger lettering on guide signs 

 Improved pedestrian features at intersections 
o Use of refuge islands 
o Use of high emphasis crosswalks 
o Use of slower walk speeds in signal timing 

 Provide advance notification 
o Use of advanced street name signs 
o Use of advanced warning signs (stop, yield, and signal ahead) 

 
In 2002, FDOT evaluated the effectiveness of the FERUP by setting up a driving course 

with differing aspects of the program for drivers ages 55 and older and allowing them to 
complete a questionnaire detailing their driving experience. The goal of the study was to 
determine whether older drivers could distinguish between previous design standards and the 
most recent design standards. It was found that there were definite advantages to larger lettering 
on signage. Furthermore, wider pavement markings and raised pavement markers were found to 
be beneficial. Offset turn lanes were found to have no real significant benefit to the older drivers 
(Guerrier and Fu, 2002). This study established that older drivers can distinguish and benefit 
from these improvements, but did not explore the effect that the various improvements have on 
crash occurrence.  

1.3.  Crash Prediction Models 
Previous research has revealed that Poisson and negative binomial distributions are often 
appropriate for modeling discrete counts of events such as crashes, which are likely to be rare or 
non-existent during a given time period. In many crash modeling situations, the data generally 
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exhibits high variation, resulting in the variance being greater than the mean, a phenomenon 
known as overdispersion. A negative binomial model is better suited for this case (Cameron and 
Trivedi, 1998); the distribution is as follows: 
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where  y = response variable of interest 

α = shape factor 
 = gamma function 
µ = mean parameter 
 
If α = 0, the mean is concentrated in the point, and the equation reduces to the Poisson 

distribution. The appropriateness of the negative binomial model relative to the Poisson model is 
determined by the statistical significance of the estimated coefficient α, and by the dispersion 
parameter, σd. 
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where  Pearson2 = Pearson chi-squared statistic 

n = the number of observations 
p = the number of model parameters 
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where  yi = observed number of accidents at intersection i 

)(ˆ
iyE = predicted accident frequency for intersection i 

Var(yi) = variance of accident frequency for intersection i 
 

If σd turns out to be significantly greater than 1.0, then the data has greater dispersion than 
is explained by Poisson distribution, and the negative binomial regression model is fitted to the 
data. 

A zero-inflated distribution may be used in cases where there are excessive zero counts.  
Again, this situation often occurs with crashes because of the high number of segments or 
intersections with no crashes during the study period.  The zero-inflated negative binomial 
(ZINB) regression model has the following formulation: 
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Maximum likelihood methods are used to estimate the parameters of Poisson and 
negative binomial regression models. 

2.  METHODOLOGY  
The goal of this study was to examine a number of qualitative and quantitative factors and 
determine which factors have the largest impact on elder driver intersection crashes.  Sources 
including Florida Department of Transportation video logs and still photographs, as well as 
Roadway Characteristics Inventory (RCI) data, were used to evaluate parameters such as type 
and condition of signage, type and alignment of signal heads, visibility of signs and signals, and 
evidence of visual clutter.  Although many of these factors are measurable in a more quantitative 
sense, with units of length or candelas, for example, such specific data is frequently unavailable.  
Therefore, to supplement the quantitative data on the intersections, each intersection was 
assessed qualitatively from the point of view of an older driver approaching the intersection at a 
normal driving speed.  This procedure is described in more detail in Section 2.2.   

2.1.  Study Data Set 
The study set includes all intersections on state roads in Florida that had undergone at least one 
fatal traffic crash in the year 2000. Severe crashes at these intersections might be indicative of a 
roadway design or traffic operation issue.  Moreover, a good deal of information on these 
intersections was available because of data collected in a companion study (Spainhour et al, 
2005). Commercial driveways with significant traffic control and other features typical of 
standard at-grade intersections were included if they fit other study criteria.  Intersections that 
underwent significant changes (widening, installation of traffic signals, etc.) during the study 
period were discarded from the study. Also, sufficient data had to be available to assess the 
features of the intersection. A total of 597 intersections met the criteria in the study. 

Once the intersections were identified, the roadway segment and milepost were used to 
obtain the number of crashes at each location during the study period. The primary source of 
quantitative crash data was the FDOT Crash Analysis Reporting (CAR) database.  Crashes were 
identified as intersection crashes using the Site Location field.  However, if there was a question 
as to whether or not a crash occurred at an intersection, verification was performed by viewing 
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video logs of the area of interest.  To include a larger number of crashes in the study, three years 
worth of crash data (2000-2002) were examined.  All crashes at the selected intersections were 
included, regardless of injury severity.  A total of 6,746 crashes occurred at the selected 
intersections during the study period, of which 1,021 and 5,725 were designated as having older 
or younger at-fault drivers, respectively.  For simplicity, these crashes are often called elder 
driver crashes and non-elder driver crashes herein, referring to the age of the driver who was 
found to be at fault in the crash.  While all 597 intersections had at least one crash during the 
study period, 216 of the selected intersections had no crashes in which elder drivers were found 
to be at fault, and 50 had no crashes in which non-elder drivers were found to be at fault.  For the 
purpose of this research, an older driver is defined as one aged 65 or above.   
 After careful consideration of crash modeling studies and other literature on the subject, 
as well as the available data, a total of 32 independent variables were selected to describe the 
roadway geometrics, traffic characteristics, pavement, signage, and control devices.  The 
variables and their allowable values are listed in Table 1.  In general, the variable characteristics 
become less benign as the values increase.  Cases where the variable was not applicable (e.g. 
super-elevation where there was no curvature, or signal visibility where there were no signals) 
were included with the benign cases.  This decision was made because regression models cannot 
be run with missing values, but separate variables already measured the effect of the original 
condition (presence of curvature or signalization).  The response variables in the models were the 
number of crashes in which elderly (elder_crash_freq) or non-elderly (nonelder_crash_freq) 
drivers were found to be at fault, respectively.   
 
Table 1 Independent Variables Used in Model 
 
Variable name Meaning Data Type 
Rural_Urban  Geographical area of roadway  00=Rural; 01=Urban 

Max_Posted_Speed  Maximum posted speed limit  01=<35 mph; 02=35-54 mph; 03=55-64 mph; 04=65 mph 
and above 

AADT Average daily traffic count 01=0-19634; 02=19635-43500; 03=43501 and above 

Avg_T_Factor  Average truck factor  01=0-13.94; 02=13.95-27.94; 03=27.95 and above 

Divided_Undivided Presence of median 00=Divided; 01=Undivided 

Median_Width  Width of median  01=0-20 ft; 02=21-54 ft; 03=55 ft and above 

Surface_Width Width of road surface 01=0-12 ft; 02=13-24 ft; 03=24 ft and above 

Number_of_Lanes Number of through lanes  01=1-2; 02=3-4; 03=4 or more 

Left/Right Lanea  Left and right turn lanes present, as 
appropriate  

00=Present; 01=Not Present 

Left/Right_Turn_Sighta  Left/right turn sight distance sufficient 00=Sufficient or N/A; 01=Not Sufficient 

Curvature Degree of curvature 01=None; 02=Mild; 03=Sharp 

Superelevation  Super-elevation of roadway  01=Proper or N/A 02=None 

Level_Not_Level Presence of roadway grade 00=Level; 01=Not Level 

No_Skew_Skew Presence of intersection skewed  00=No Skew; 01=Skew 

Shoulder_Type  Type of shoulder  01=Paved; 02=Unpaved; 03=Curb or Other 

Blacktop_Not Type of pavement 01=Blacktop; 02=Other 

Skid_Test_Results  Skid test result 01=41 and above or N/A; 02=31-40; 03=30 and below 

Delineationa  Pavement markings clearly visible  00=Good; 01=Faded 

Advanced_Lane_ 
Assignmenta  

Advance lane assignment pavement 
markings present  

00=Present; 01=Not Present 

Raised_Pavement_ 
Markersa  

Raised pavement markers present  00=Present; 01=Not Present 

Signalized_Unsig  Signalization of intersection  00=Signalized; 01=Unsignalized 

Signal_Head_Type Type of signal head used  01=Hanging or N/A 02=Mast Arm 
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Signals_Lanesa  Number of signals = number of lanes  00=Yes or N/A; 01=No 

Signals_Line_Upa  Signals line up with lanes  00=Yes or N/A; 01=No 

Signal_Visibilitya  Visibility of signals 00=Visible or N/A; 01=Poorly Visible  

Advanced_Signagea  Presence of advance warning signs   00=Present; 01=Not Present 

Signs_Visiblea  All signs visible upon approach 00=Yes; 01=No 

Sign_Placementa  All signs properly placed 00=Proper; 01=Improper 

Internal_Contrast  All signs legible 00=Legible or N/A; 01=Illegible 

External_Contrasta  All signs can be detected  00=Can Be Detected; 01=Hard To Detect 

Retro_Reflective_ 
Signage 

Retro-reflective sheeting present on 
signs 

00=Present; 01=Not Present 

Visual_Cluttera  Visual clutter/noise present  00=Not Present; 01=Present 
aObtained through Visual Inspection 

2.2.  Visual Inspection Procedure and Examples 
Because of the subjective nature of the visual assessment procedure, it is discussed in more detail 
here, and examples of several intersections are provided to illustrate how different features were 
categorized.  The video log images provided by the Florida Department of Transportation served 
as the key source of information for the visual inspections. The video logs are still photographs 
taken in both directions at regular interval from the right most lanes of the state maintained 
roads. The video log images used in this study were taken at various times during the year 2000.  
Figure 1 shows a snapshot of the video log viewer.  Note the acute skew angle of the intersection 
being displayed. 
 

Insert Fig. 1 approximately at this location 
 
Figure 1 Example Video Log Image 
 

Additional data sources were available for a number of crashes in the study, including 
TIFF images of crash reports, Traffic Homicide Investigation (THI) reports, and crash scene 
photographs.  A limited number of site visits were conducted to verify details and validate the 
process.  As described in Spainhour et al (2005), the additional data sources were used to 
complete and correct any errors and omissions discovered in the initial crash report data from the 
CAR database.  In addition, the supplemental photographs were often taken from different 
viewpoints, which were most helpful when the secondary roadway was not state-maintained.  
While the crash scene photographs may have provided some insight into the nighttime visibility 
of an intersection, the video log images were collected during daytime conditions; therefore, the 
qualitative assessments of intersection factors represent daytime conditions.   

Case studies of both signalized and unsignalized intersections are provided below.  
Figure 2 illustrates two typical signalized intersections. The intersection in Figure 2(a) is lacking 
sight distance: there are several objects such as trees and signs blocking the sight distance on the 
right-hand side. Therefore, the left/right_turn_sight variable would have the value “01=Not 
Sufficient.” The pavement markings are worn, so the variable delineation would equal 
“01=Faded.” Also, the wire configuration with numerous signal heads makes signal visibility 
poor, so the value of signal_visibility would be deemed “01=Poorly Visible.” The signal head 
type would be “00=Hanging.” On the other hand, the intersection in Figure 2(b) meets FERUP 
standards and has fewer undesirable characteristics. Figure 2(b) shows separate right and left turn 
lanes with advance lane assignment markings on the pavement. Moreover, the pavement is in 
good condition with high quality pavement markings. The sight distance is also proper because 
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there are no obstructed views. Lastly, the signs have appropriate font, configuration, and 
placement.  The signal head type is mast arm; however, there are fewer heads than lanes.  All 
variable values would be assigned accordingly. 
 

Insert Fig. 2 approximately at this location 
 
Figure 2 Examples of Typical Signalized Intersections 
 

Figure 3 depicts two typical unsignalized intersections. Figure 3(a) shows an intersection 
where pavement markings are distinguishable and properly maintained. The pavement is in good 
condition. There are also warning signs to alert the driver of changes in the roadway. 
Consequently, the variable representing advanced_signage would be set to “00=Present.” The 
signs are properly placed making the sign_placement variable equal to “00=Proper.” 
Alternatively, Figure 3(b) shows worn, cracked pavement and faded pavement markings; this 
pertains to the delineation variable, which would take on a value of “00=Faded.” Nevertheless, 
the intersection has left and right turn lanes; therefore, the left/right_lane variable would take the 
value “00=Present.” Both intersections have raised pavement markers, making that variable 
“00=Present.” 
  

Insert Fig. 3 approximately at this location 
 
Figure 3 Examples of Typical Unsignalized Intersections 
 

Another item of interest in the study is visual clutter. Figure 4 below depicts two different 
intersections with differing levels of visual clutter. Both intersections are located in urban areas; 
however, the intersection in Figure 4(b) has a larger amount of visual clutter than the one in 
Figure 4(a). There are a large number of business signs that may make it difficult for a driver to 
locate road signs; this is exacerbated to an extent by the curvature, which places the commercial 
signs in the driver’s line of sight as he or she approaches the intersection.  As a result, the 
visual_clutter variable for this intersection would have the value of “00=Present.”  Note, 
however that in Figure 4(a), one directional sign almost completely obscures another on 
approach, leading to a value of 01=No for the signs_visible variable.   
 

Insert Fig. 4 approximately at this location 
 
Figure 4 Examples of Visual Clutter 
  

3.  RESULTS AND DISCUSSION 
A rating system was developed to provide a general assessment measure of the condition of the 
597 intersections in the study set. The rating system basically assigns one point to each of the 32 
variables in the study and awards that point to intersections having benign conditions for that 
variable.  The highest rated intersection met all 32 criteria, and the lowest rated intersection met 
only 15 of the criteria.  As shown in the Table 2, approximately four percent of the intersections 
are in excellent condition, defined as benign values for at least 29 of the 32 variables.  Forty-
eight, forty-three, and five percent of the intersections were in good, fair, and poor condition, 
respectively, as defined in Table 2.   
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Table 2 Condition of Selected Intersections 
 

Elderly Crashes Non-Elderly Crashes
Intersection 
Condition 

Number  of 
Intersections 

Vehicle 
Exposure per 

Year No. 
No. per 108 

vehicles 
No. 

No. per 108 
vehicles 

Excellent (29-32) 24 226,833,995 44 6.47 216 31.74 
Good (25-28) 288 2,957,815,460 521 5.87 2762 31.13 
Fair (21-24) 257 2,948,066,675 429 4.85 2587 29.25 
Poor (15-20) 28 239,952,825 27 3.75 160 22.23 
Total 597 6,372,668,955 1021 5.34 5725 29.95 
 

Table 2 also shows the total number of elder and non-elder crashes at the intersections, 
categorized according to condition.  To account for exposure, the total number of vehicles per 
year on the main leg of all intersections in each category is shown, and the crashes are 
normalized by that value.  Note that crashes caused by both elder and non-elder drivers appear to 
occur more frequently at the higher quality intersections, even when normalized for exposure.  
Obviously, this is a very rough measure of “quality,” where each factor is given equal weight.  
However, it leads to the question of what factors most heavily influence crash occurrence at 
intersections, which is further explored below. 

All statistical analysis was done using Stata/SE 8.1 for Windows.  Prior to running any 
models, a correlation analysis was conducted to evaluate the degree of correlation among the 
variables.  Of the 496 variable-variable correlation coefficients, only seven were found to be 
greater than 0.5; they are listed below.  The first two can be explained by traffic operations and 
roadway design principles, and the rest seem to imply that intersection upgrades tend to address 
more than one factor at the same time, e.g. additions of advanced signage and pavement 
markings at the same time.  To address the effect of correlated variables on goodness of fit, 
models were run with and without the associated variables with no significant difference in fit or 
coefficient values.  The results presented below include all 32 dependent variables. 

 
 Annual average daily traffic (AADT) & number of lanes (0.5554) 
 Super-elevation & curvature (0.6029) 
 Advanced signage & advanced pavement markings (0.5751) 
 Signal head type & retro-reflective signage (0.6915) 
 Sign placement & internal contrast (0.5548) & external contrast (0.5676) 
 Internal contrast & external contrast (0.7768) 

 
Table 3 provides summary statistics for the raw measures of all numeric input variables, 

as well the two dependent variables in the study. While numerical variables are presented here 
for illustrative purposes, categorical variables were used in the regression models, as described 
previously.  
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Table 3 Summary Statistics for Numerical Variables 
 

Variable Min Max Mean Median St Dev Variance 
Number of Lanes  1 12 4.23 4 1.49 2.21 
AADT  1100 197000 29245 27500 18683 3.49E+08 
Surface Width (ft) 10 51 27.14 24 6.98 48.72 
Median Width (ft) 6 197 28.90 24 18.94 358.69 
Posted Speed Limit (mph) 30 70 47.45 45 7.89 62.21 
Average T Factor  0.68 41.84 7.83 5.68 6.28 39.42 
Skid Test Number  24 61 39.18 38 6.54 42.77 
Radius of Curvature (ft) 1078 11459 3184 2142 2741 7514400 
Super-elevation  0 7 1.89 1.7 1.75 3.07 
Elder Crashes 0 12 1.71 1 2.16 4.66 
Non-Elder Crashes 0 112 9.59 5 13.04 170.01 

 
 Frequency and box plots for elder and non-elder intersection crashes are shown in Figure 
5; the box plots display the 25th and 75th percentiles within the boxes, and the adjacent values 
(1.5 times the respective percentile) as whiskers.  As shown in Table 3, the variance is great than 
the mean for crashes caused by both elderly and non-elderly drivers.  This implies that data 
violates the Poisson distribution assumption, and the binomial distribution should be the most 
appropriate.  Figures 6 and 7 show observed distributions for the elder and non-elder crash data 
in comparison to both the Poisson and negative binomial models. Again, the negative binomial 
distribution fits better with the observed data, especially for elder driver crashes.  Therefore, the 
negative binomial model was tested first; however, several additional models including zero-
inflated and zero-truncated models were also tested to explore goodness of fit.   
  

Insert Fig. 5 approximately at this location 
 
Figure 5 Distribution of Elder and Non-Elder Crashes 
 

Insert Fig. 6 approximately at this location 
 
Figure 6 Comparison of Poisson and Negative Binomial Models with Elder Crash 
Distribution 
 

Insert Fig. 7 approximately at this location 
 
Figure 7 Comparison of Poisson and Negative Binomial Models with Non-Elder Crash 
Distribution 

  
Table 4 shows the results of the negative binomial model of elder driver intersection 

crashes.  A positive coefficient indicates that increasing the value of the independent variable in 
question results in a higher probability of elder crashes occurring at an intersection.  The p-value 
(P>|z| column) indicates the significance of the result; p=0.05 corresponds to 95% confidence in 
the result.  A number of goodness of fit statistics are included as footnotes to the table.  The 
likelihood ratio chi-squared test statistic for the model is 123.76, with p=0.000, indicating that the 
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overall model is statistically significant.  The model has an α value of 0.62656, also with 
p=0.000, which confirms that the negative binomial model is favored over the Poisson’s.   
  
Table 4 Results of Negative Binomial Model of Elder Driver Crashes 
 

Variables Coef. Std. Err Z P>|z| 
95% CI 

Min 
95% CI 

Max 
Rural_Urban  -.04861 .10756 -0.45 0.651 -.2594 .16221 
Max_Posted_Speed  -.36082 .18878 -1.91 0.056 -.7308 .00919 
AADT .19548 .09487 2.06 0.039 .0095 .38143 
Avg_T_Factor  .10743 .14279 0.75 0.452 -.1724 .38730 
Divided_Undivided -.52358 .13087 -4.00 0.000 -.7801 -.26709 
Median_Width  -.02251 .06314 -0.36 0.721 -.14627 .10124 
Surface_Width -.12516 .11820 -1.06 0.290 -.35680 .10650 
Number_of_Lanes -.00892 .10462 -0.09 0.932 -.21397 .19612 
Left/Right Lane .02740 .11473 0.24 0.811 -.19746 .25226 
Left/Right_Turn_Sight  -.30396 .11307 -2.69 0.007 -.52558 -.08235 
Curvature -.06853 .26464 -0.26 0.796 -.58721 .45015 
Superelevation  -.38206 .44256 -0.86 0.388 -1.2494 .48533 
Level_Not_Level .11257 .18633 0.60 0.546 -.25263 .477779 
No_Skew_Skew -.02564 .14515 -0.18 0.860 -.31014 .25886 
Shoulder_Type  .06030 .06180 0.98 0.329 -.06074 .18150 
Blacktop_Not .16360 .26889 0.61 0.543 -.3634 .69060 
Skid_Test_Results  .24237 .13573 1.79 0.074 -.02369 .50835 
Delineation -.16662 .23639 -0.70 0.481 -.62994 .29670 
Advanced_Lane_Assignment .23598 .19546 1.21 0.227 -.14713 .61908 
Raised_Pavement_Markers -.42168 .14108 -2.99 0.003 -.69819 -.14517 
Signalized_Unsig -.43688 .24774 -1.76 0.078 -.92246 .04869 
Signal_Head_Type -.06170 .14273 -0.43 0.665 -.34143 .21802 
Signals_Lanes -.01703 .1542 -0.11 0.912 -.31930 .28523 
Signals_Line_Up .06902 .34523 0.20 0.842 -.60761 .74565 
Signal_Visibility  -.01963 .38009 -0.05 0.959 -.76451 .72532 
Advanced_Signage .04882 .12990 0.38 0.707 -.20579 .30342 
Signs_Visible -.28536 .23899 -1.19 0.233 -.75373 .18308 
Sign_Placement .16665 .34251 0.49 0.627 -.50467 .83796 
Internal_Contrast  .15916 .26277 0.61 0.545 -.35587 .67419 
External_Contrast -.39705 .30019 -1.32 0.186 -.98540 .19131 
Retro_Reflective_Signage .36291 .26040 1.39 0.163 -.14747 .87329 
Visual_Clutter .06810 .15975 0.43 0.670 -.24501 .38120 
Constant .91119 .65956 1.38 0.167 -.38151 2.2039 

Likelihood-Ratio test of NB model: chi2(32)=123.76, Prob > chi2=0.0000 whole model significant 
Log likelihood=-1003.3992 (full), LL=-1065.277 (intercept only) full model favored over constant only 
α=0.62656 LR test of α: chi2(01)=191.68, Prob > chi2=0.0000 α≠0, NB favored over Poisson 
Akaike Information Criterion (AIC)=3.475 
Bayesian Information Criterion (BIC)=-1591.851, BIC’=80.786 
 

Four variables were found to be significant at the 95% confidence level in the standard 
negative binomial model.  Of these, AADT had a positive coefficient, indicating that an increase 
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in traffic correlated with an increase in elder driver crashes. Divided_undivided had a negative 
coefficient, meaning that undivided highways, the higher valued category, correlated to a 
decrease in elder driver crashes, with respect to divided highways, the lower valued category.  
Finally, left/right_turn_sight and raised_pavement_markers had negative coefficients, implying 
that decreased sight distances and lack of RPM’s correlate to decreases in elder driver crashes, 
both unexpected results.  Max_posted_speed, skid_test_results, and signalized_unsig were all 
significant at the 90% confidence level, with higher speed limits, increased pavement friction, 
and unsignalized intersections correlating to decreases in elder driver crashes.   

Whenever there are large numbers of zeros in the count data, the Poisson or negative 
binomial distribution may not satisfactorily fit the data, and a zero-inflated count model might be 
preferred.  In essence, zero-inflated regression models are characterized by a dual-state process, 
where the observed count can either be located in a perfect state (zero elder driver crashes) or in 
an imperfect state (one or more elder driver crashes).  First, the model estimates the effects of the 
independent variables on the crash frequency; these coefficients are interpreted just like standard 
negative binomial coefficients.  For these variables, a positive coefficient indicates that 
increasing the value of the independent variable in question results in a higher probability of zero 
crashes occurring at an intersection. 

The Vuong test was used to investigate fit of the zero-inflated model.  The Vuong test 
statistic (V) has an asymptotic normal distribution; if V is more positive than 1.96, the zero-
inflated model has a better fit with the observed data, with 95% confidence.  However, if V has a 
large negative value, then the normal Poisson or negative binomial is preferred.  Because 216 of 
the 597 intersections had zero elder-driver crashes, a zero-inflated negative binomial (ZINB) 
model was run to investigate its fit.  Initially the model failed to converge, and convergence had 
to be forced artificially.  Table 5 shows the results of the ZINB model, including goodness of fit 
statistics.  In addition to the low Vuong’s statistic of 0.28 (p=0.3887), which fails to favor the 
zero-inflated model, note the high p-values for almost every coefficient in the non-inflated 
portion of the model.  Because this model had such poor fit with the data, its results are not 
discussed any further. 
  
Table 5 Results of Zero Inflated Negative Binomial Model of Elder Driver Crashes 

 

Variables Coef. Std. Err Z P>|z| 
95% CI 

Min 
95% CI 

Max 
Rural_Urban  .00208 .11054 .020 .985 -.2146 .21874 
Max_Posted_Speed  -.01552 .20836 -.070 .941 -.4239 .39286 
AADT .01888 .09917 .190 .849 -.1755 .21324 
Avg_T_Factor  .01644 .15780 .100 .917 -.2928 .32573 
Divided_Undivided -.01994 .14260 -.140 .889 -.2994 .25954 
Median_Width  -.00182 .06570 -.030 .978 -.1306 .12695 
Surface_Width -.00913 .12116 -.080 .940 -.2466 .22834 
Number_of_Lanes .00129 .10830 .010 .991 -.2110 .21355 
Left/Right Lane .00521 .11986 .040 .965 -.2297 .24013 
Left/Right_Turn_Sight  -.00921 .11779 -.080 .938 -.2401 .22166 
Curvature .00562 .28217 .020 .984 -.5474 .55867 
Superelevation  -.04963 .45925 -.110 .914 -.9497 .85048 
Level_Not_Level -.00134 .19040 -.010 .994 -.3745 .37184 
No_Skew_Skew -.00320 .15089 -.020 .983 -.2990 .29254 
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Shoulder_Type  .00034 .06414 .010 .996 -.1254 .12606 
Blacktop_Not .01927 .28917 .070 .947 -.5475 .58604 
Skid_Test_Results  .01638 .14077 .120 .907 -.2595 .29229 
Delineation -.00911 .24575 -.040 .970 -.4908 .47255 
Advanced_Lane_Assignment .00925 .20417 .050 .964 -.3909 .40943 
Raised_Pavement_Markers -.02621 .14822 -.180 .860 -.3167 .26430 
Signalized_Unsig -.02309 .25977 -.090 .929 -.5322 .48606 
Signal_Head_Type -.00645 .14366 -.040 .964 -.2880 .27512 
Signals_Lanes -.00287 .15507 -.020 .985 -.3068 .30105 
Signals_Line_Up -.00017 .34844 .000 1.000 -.6831 .68276 
Signal_Visibility  .01035 .40743 .030 .980 -.7882 .80889 
Advanced_Signage .00114 .13223 .010 .993 -.2580 .26031 
Signs_Visible .00018 .26134 .000 .999 -.5120 .51241 
Sign_Placement .01658 .34638 .050 .962 -.6623 .69548 
Internal_Contrast  .01496 .26232 .060 .955 -.4992 .52909 
External_Contrast -.03706 .30711 -.120 .904 -.6390 .56487 
Retro_Reflective_Signage .02519 .27105 .090 .926 -.5061 .55644 
Visual_Clutter -.00006 .16049 .000 1.000 -.3146 .31450 
Constant .60991 .69867 .870 .383 -.7595 1.97929 
Inflated Model       
Rural_Urban  99.65832 6.57686 1.650 .100 -19.070 218.387 
Max_Posted_Speed  5.02518 34.07831 1.470 .142 -16.767 116.817 
AADT 55.38322 42.05830 1.320 .188 -27.049 137.816 
Avg_T_Factor  66.54515 38.91239 1.710 .087 -9.7217 142.812 
Divided_Undivided 156.3271 89.99377 1.740 .082 -2.057 332.712 
Median_Width  1.09974 17.61634 .060 .950 -33.428 35.6271 
Surface_Width -11.2873 59.34587 -.190 .849 -127.60 105.028 
Number_of_Lanes 19.75070 28.80556 .690 .493 -36.707 76.2086 
Left/Right Lane 12.01746 16.17989 .740 .458 -19.694 43.7295 
Left/Right_Turn_Sight  136.7313 86.50034 1.580 .114 -32.806 306.269 
Curvature 84.56425 5.79315 1.660 .096 -14.989 184.117 
Superelevation  -15.614 95.59581 -1.580 .115 -337.98 36.7500 
Level_Not_Level -8.6892 8.29738 -1.000 .315 -238.07 76.6908 
No_Skew_Skew -26.0747 19.19403 -1.360 .174 -63.694 11.5449 
Shoulder_Type  -65.8878 38.87370 -1.690 .090 -142.08 1.3032 
Blacktop_Not 91.04876 54.50525 1.670 .095 -15.780 197.877 
Skid_Test_Results  -14.6106 47.55292 -.310 .759 -107.81 78.5914 
Delineation -2.95583 149.88150 -.020 .984 -296.72 29.807 
Advanced_Lane_Assignment -95.5158 96.35718 -.990 .322 -284.37 93.3408 
Raised_Pavement_Markers 18.91258 31.62997 .600 .550 -43.081 8.9062 
Signalized_Unsig 8.07769 56.15628 1.430 .154 -29.987 19.142 
Signal_Head_Type 5.66935 69.45532 .080 .935 -13.46 141.799 
Signals_Lanes -137.107 107.80690 -1.270 .203 -348.40 74.1901 
Signals_Line_Up -.46180 .00000 - - -.4619 -.4618 
Signal_Visibility  91.21616 375.76540 .240 .808 -645.27 827.703 
Advanced_Signage -27.8642 65.88325 -.420 .672 -156.99 101.265 
Signs_Visible 136.5794 117.76200 1.160 .246 -94.230 367.389 
Sign_Placement -14.4961 23.37350 -.060 .950 -466.02 437.028 
Internal_Contrast  61.88449 363.22430 .170 .865 -65.02 773.791 
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External_Contrast -126.666 417.42140 -.300 .762 -944.78 691.465 
Retro_Reflective_Signage -65.7344 69.56497 -.940 .345 -202.08 7.6104 
Visual_Clutter -128.851 139.84660 -.920 .357 -402.94 145.243 
Constant -463.603 267.68650 -1.730 .083 -988.26 61.053 

Likelihood-Ratio test of NB model: chi2(64)=10.88, Prob > chi2=1.0000 whole model not significant 
Log likelihood=-1005.93 (full), LL=-1000.49 (intercept only) full model favored over constant only 
α=0.71329, Prob > chi2=1.0000 α≠0, NB favored over Poisson 
AIC=3.576, BIC=-1386.74, BIC’=285.894 
 

Numerous other models, including Poisson, zero-inflated Poisson, and several stepwise 
selection and zero-truncated models, were tested to ensure that the model with the best fit 
parameters was chosen.  The best fit statistics, as measured by the smallest Akaike Information 
Criterion (AIC) and the most negative Bayesian Information Criterion (BIC), favored a compact 
model generated by a forward stepwise selection based on the standard binomial regression 
model.  Stepwise regression removes the potential biasing effect of manual variable selection 
with its preconceptions on which factors should be included in the model.  A forward stepwise 
selection process starts with an empty model and then incrementally adds and removes variables 
while optimizing model fitness values.  The process terminates if no further variable can be 
added to the model or if the variable just entered into the model was the only variable removed in 
the previous elimination step.  A p-value of 0.15 was chosen as a cutoff for adding variables to 
the model, implying that variables with greater than 85% confidence were added, and a p-value 
of 0.30 was chosen as a cutoff for removing variables.   

The selection process resulted in a model with nine variables, summarized in Table 6.  
The AIC of 3.414 and BIC of -1729.38 were the smallest and most negative, respectively, of all 
models tested in the study.  The likelihood ratio chi-squared of 101.81 indicated that the data had 
good overall fit with the data (p=0.000). 
  
Table 6 Results of Negative Binomial Model with Stepwise Selection for Elder Driver 
Crashes 

 

Variables Coef. Std. Err Z P>|z| 
95% CI 

Min 
95% CI 

Max 
Signalized_Unsig -.70229 .09998 -7.02 0.000 -.89825 -.50633 
Divided_Undivided -.50707 .12207 -4.15 0.000 -.74632 -.26783 
Raised_Pavement_Markers -.45880 .12924 -3.55 0.000 -.71211 -.20549 
Left/Right_Turn_Sight -.29016 .10775 -2.69 0.007 -.50135 -.0790 
Max_Posted_Speed -.32436 .17136 -1.89 0.058 -.66022 .01149 
Advanced_Lane_Assignment .33577 .15063 2.23 0.026 .04053 .63101 
AADT .14649 .07491 1.96 0.051 -.00034 .29332 
Skid_Test_Results .23734 .13271 1.79 0.074 -.02276 .49745 
Signs_Visible -.31926 .21612 -1.48 0.140 -.74284 .10432 
Constant .97834 .44664 2.19 0.028 .10294 1.8538 
Likelihood-Ratio test of NB model: chi2(9)=114.274, Prob > chi2=0.0000 whole model significant 
Log likelihood=-1065.277 (full), LL=-1008.140 (intercept only) full model favored over constant only 
α=0.6480677, LR test of α: chi2(01)=202.35, Prob > chi2=0.0000 α≠0, NB favored over Poisson 
AIC=3.414, BIC=-1729.383, BIC’=-56.746 
 



Spainhour & Smith 16

The results of this model are very similar to the negative binomial model based on all 32 
variables (see Table 4).  Five variables were found to be significant at the 95% confidence level 
in the compact negative binomial model.  Of these, signalized_unsig and divided_undivided had 
negative coefficients, meaning that unsignalized and undivided intersections were associated 
with fewer elder-driver crashes than signalized and divided intersections, respectively.  Again, 
left/right_turn_sight and raised_pavement_markers had negative coefficients, implying that 
decreased sight distances and lack of RPM’s correlate to a decrease in elder driver crashes.  
Advanced_lane_assignment, which previously was not significant, is significant at the 95% 
confidence level in this model; the positive coefficient implies that lack of lane assignment markers 
(the higher valued category) increases crash risk for older drivers.  Max_posted_speed, AADT, and 
skid_test_results were all significant at the 90% confidence level, with higher speed limits, increased 
traffic counts, and increased pavement friction correlating to decreases in elder driver crashes.   

To provide comparison data, similar models were run on the crashes where a non-elder 
driver was found to be at fault.  The analogous models showed comparable results to those found 
with the elder crash data, except that the ZINB was significant and preferred over the standard 
NB model (p=0.000).  Again, however, the model had to be forced artificially into convergence, 
and no variables in the inflated model were significant at a confidence above one percent; 
therefore, the model was discarded as not fitting the data.  Despite the presence of fewer zero-
crash intersections than might be predicted by a standard negative binomial model (as evident in 
Figure 7), a zero-truncated model (ran against only the intersections with at least one crash) did 
not have better fit with the data.  Again, the model with best fit with the non-elder crash data, as 
measured by the smallest Akaike Information Criterion (AIC) and the most negative Bayesian 
Information Criterion (BIC), was a compact model generated by a forward stepwise selection 
based on the standard binomial regression model.  Results of this model are presented in Table 7; 
note that the AIC and BIC values were superior compared to the other models of non-elder 
crashes, and cannot be directly compared to those listed previously for elder driver crashes. 
  
Table 7 Results of Negative Binomial Model with Stepwise Selection for Non-Elder Driver 
Crashes 

 

Variables Coef. Std. Err Z P>|z| 
95% CI 

Min 
95% CI 

Max 
Signalized_Unsig -.92411 .18316 -5.05 0.000 -1.283 -.56513 
AADT .36346 .06870 5.29 0.000 .22879 .49813 
Curvature -.58609 .18879 -3.10 0.002 -.95611 -.21607 
Signals_Line_Up -.91592 .31408 -2.92 0.004 -1.5315 -.30033 
Retro_Reflective_Signage .39527 .18433 2.14 0.032 .03400 .75654 
Signal_Head_Type -.31456 .12334 -2.55 0.011 -.55629 -.07282 
Advanced_Signage .23820 .09946 2.39 0.017 .04327 .43314 
Surface_Width .15413 .08604 1.79 0.073 -.01450 .32277 
Raised_Pavement_Markers -.17438 .10314 -1.69 0.091 -.37654 .02778 
Constant 1.8866 .32346 5.83 0.000 1.2527 2.5206 
Likelihood-Ratio test of NB model: chi2(9)=259.026, Prob > chi2=0.0000 whole model significant 
Log likelihood=-1966.439 (full), LL=-1836.925 (intercept only) full model favored over constant only 
α=0.8292397, LR test of α: chi2(01)=3143.55, Prob > chi2=0.0000 α≠0, NB favored over Poisson 
AIC=6.191, BIC=-71.812, BIC’=-201.499 
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As with the elder crash model, the compact model for the non-elder crashes had nine 
variables.  However, many of the significant variables are different.  The three variables that 
were common to both models, signalized_unsig, AADT, and raised_pavement_markers, had the 
same coefficient signs, and therefore can be interpreted similarly.  The remaining six variables 
were not significant in any elder driver model.  The signal_head_type and signals_line_up 
variables both have negative values, indicating that mast arm signals and signals offset from the 
travel lanes are both associated with decreased likelihood of crashes.  Positive coefficients on the 
retro_reflective_signage and advanced_signage variables indicate that lack of these safety 
features correlated with increased crash probabilities, as would be expected.  However, a 
negative coefficient on the curvature variable implies that increasing curvature is associated with 
decreased probability of crashes where non-elder drivers were at fault.   

4.  CONCLUSIONS  
This study sought to evaluate the factors affecting elder driver intersection crashes by building a 
crash prediction model that examines older driver crash frequency using variables obtained from 
quantitative variables such as maximum posted speed limit and subjective variables such as sign 
visibility. A similar model for non-elderly driver crashes was developed for comparison.  For this 
study, statistical tests revealed the crash data were overdispersed, favoring the negative binomial 
over the Poisson distribution. Despite the presence of many zero-crash intersections in the older 
driver data set, and somewhat fewer zero-crash intersections in the non-older driver data set, 
neither zero-inflated nor zero-truncated models were preferred over the standard negative 
binomial model.  Best-fit models, as measured by Akaike and Bayesian Information Criteria, 
were chosen; the favored models for both elder and non-elder crashes were standard negative 
binomial models reduced using forward stepwise regression.  Table 8 provides a summary of 
factors that were found significant at the 90 percent confidence level, and a statement of how 
each variable affects elder and/or non-elder crashes.   
   
Table 8 Summary of Contributing Factors in Crashes with Elder and Non-Elder At-Fault 
Drivers 

  
Significant Variables and Preferred States 

Independent Variable Elder Driver Crashes Non-Elder Driver Crashes 
Signalized_Unsig Unsignalized better Unsignalized better 
AADT Lower traffic count better Lower traffic count better 
Raised_Pavement_Markers No RPM’s better No RPM’s better 
Divided_Undivided Undivided better No significant effect 
Left/Right_Turn_Sight Less sight distance better No significant effect 
Max_Posted_Speed Higher speed limit better No significant effect 
Advanced Lane Assignment Advanced markings better No significant effect 
Skid_Test_Results Increased friction better No significant effect 
Curvature No significant effect Increased curvature better 
Signals_Line_Up No significant effect Signals offset from lanes better 
Retro_Reflective_Signage No significant effect Retro-reflective signage better 
Signal_Head_Type No significant effect Mast arm signals better 
Advanced_Signage No significant effect Advanced signage better 
Surface_Width No significant effect Wider roads better 
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Examining the conclusions in Table 8, major operation and design aspects, such as high 

traffic counts and absence of signalization and medians, appear to be much more significant 
measures of crash likelihood than other features or safety enhancements.  Undivided highways 
and unsignalized intersections with low traffic counts were likely associated with decreased 
crash probability because they are simpler, easier to visually inspect and easier to navigate.  
Many other variables in the study, including geographical location, grade, presence of truck 
traffic, and type of pavement and shoulder, had little to no effect on intersection safety.  This list 
includes several factors examined by other researchers, including delineation quality, skew 
angles, and sign contrast and visibility (Staplin et al, 1997; Isler et al, 1997; Scialfa et al, 2008).  
Results are consistent with those of other researchers that appear to indicate that older drivers 
either do not have increased difficulty with sign detection under various environments, or are 
able to effectively compensate for age-related vision decreases (Sturr et al, 1990; Ho et al, 2001; 
Kline et al, 1999; Schnell et al, 2004).   

Several qualitative safety features, including advanced warning signs that might have 
initially been installed as part of the Florida Elder Road User Program, had greater impacts on 
non-elderly drivers.  Younger drivers were also more prone to traffic crashes at intersections 
with lower sign reflectivity and hanging signals, factors which did not impact older drivers.  
However, older drivers had more crashes when pavements were not marked with advanced lane 
assignment markers and when skid resistance was lower.   

Several results of the study appear counter-intuitive, such as decreased crash likelihoods 
with higher speed limits, decreased turning sight distances, and curvature.  These effects might 
be caused by self-limiting behavior among drivers (D’Ambrosio et al, 2007).  For instance, 
drivers might avoid left-turning movements on segments with higher speed limits or poor sight 
distance.  Higher crash rates also might be correlated with certain safety features, such as RPM’s, 
because the safety features are so commonplace, or because the safety devices were placed at 
intersections which already had much higher than average crash rates.  However, additional 
research should be directed toward each unexpected result.  In addition, examining contributing 
factors by crash type and severity is also recommended.   
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