Modeling Fault in Fatal Pedestrian Crashes
by Using Various Data Sources
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Binary logistic regression was used to model fault in 318 fatal pedestrian
cases that occurred in Florida in the year 2000. The results were used to
classify fault and identify factors that influenced fault. An expert fault
assessment served as a control for predicting fault in each crash. The
expert assessment team conducted a case review of each traffic crash by
using additional data sources, such as traffic homicide reports, diagrams,
photographs, accident reconstructions, and site visit notes. The logistic
models correctly classified fault in anywhere from 84% to 97% of the
cases. The existing Florida Department of Transportation algorithm
correctly classified fault in only 56 % to 58 % of the same cases. Improve-
ments in classification accuracy were shown to stem from two sources:
the abundance of the data and the improved accuracy of the data. The
mental state of the pedestrian and the driver were shown to be important
in determining fault. Exhibiting a mental aberration, such as inattention,
distraction, perception or decision error, or intoxication, increased the
propensity for fault. Issues such as the number of lanes attempted in a
crossing, the age of an individual, being a former vehicle occupant, having
limited conspicuity, receiving a citation, and wet rpads were also shown
to be factors significant in determining fault.

Florida’s traffic fatalities in 2000 accounted for 10% of the national
total, with a pedestrian fatality rate (the number of pedestrian fatal-
ities per 100,000 resident population) that was the highest in the
nation (7). Determination of the factors that contribute to pedes-
trian crashes and accurate assessment of fault are critical in eval-
uating the safety of a transportation network for pedestrians and for
developing and selecting appropriate targeted countermeasures.
When a collision between a pedestrian and a motor vehicle occurs,
it is judicious to ascertain fault, whether it is that of a driver, a
pedestrian, or another factor. such as a vehicle, roadway condition,
or environmental condition. Although the determination of fault
is valuable from a safety standpoint because it enables the devel-
opment of directed safety campaigns and engineering counter-
measures, the fatal crash data reported in Florida crash reports do
not contain an explicit fault determination, Without a clear fault
assessment, current techniques tend to place a high importance on
failure to comply with stale statutes in assessing fault and potentially
diminish or even overlook other potential contributing factors, such
as roadway or traffic factors. The research described here sought
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to better understand fault in fatal pedestrian crashes and the factors
that influence the modeling of fault.

At present, limited Florida crash report data are available from state
database extracts because they incorporate only the coded data from
the Florida Traffic Crash Report and do not include data from the
crash narrative or diagram. The data also contain errors introduced
during the various data collection and transcription processes (2).
Images of the original crash report narratives and diagrams can be
reviewed manually; but it is a time-consuming process, and narra-
tives are often lacking in detail. especially details on driver attitudes
and actions, making it difficult to assign fault.

The Florida Department of Transportation (FDOT) currently uses
asimple algorithm to assign fault. The model is based on a de facto
convention by which officers are expected to place the at-fault
driver or pedestrian in the first section of the crash report. FDOT
thereby presumes that the individual in the first section is at fault,
unless a citation was given to drivers or pedestrians in subsequent
sections of the crash report, in which case fault is reassigned to the
person receiving the citation. Two major flaws were found in this
reasoning, especially when it is applied to the pedestrian crashes
reviewed in this study. First, the often fatal injuries sustained by the
pedestrian frequently defer the collection of information on the
pedestrian until after the driver information has been collected,
meaning that information on at-fault pedestrians is often not in the
first section of the crash report. Second. in the event of a fatality.
even if the pedestrian in the second section is at fault, he or she is
never cited in the crash. Clearly, additional factors need to be con-
sidered when the fault in pedestrian crashes is predicted. As such,
the objectives of this research were (a) to identify relevant data
sources; (b) to conduct detailed case reviews of pedestrian crashes
by using the most accurate data available: (¢) to identify the true
condition of fault in the crashes: (d) to build logistic regression
models to predict the probability that the driver or pedestrian, or
both, was at fault; and (e) to compare the fault state predicted by
the regression models with the true state of fault and evaluate the
predictive capability of the fault models.

Researchers have already modeled fault among motor vehicle—
bicycle crashes (3), motor vehicle—motoreycle crashes (4), and motor
vehicle—motor vehicle crashes (5); however, motor vehicle—pedestrian
crashes remain unexplored. Previous studies in Hawaii relied on
coded crash data collected by the police and on fault determined
“by the investigating officers and reported on crash report forms.
In Hawalii, the indication of fault on crash reports appears to be
similar to the convention used in Florida, as elaborated by Kim et al.
(5). Although pedestrian cases were not addressed, the methods
of determining fault are similar; and the prominence of human
behavioral or risky factors, especially alcohol, in determining
fault is common.
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DATA AND METHODS

Actotal of 318 fatal pedestrian cases that occurred in 2000 were used
for this study. Two data sets were used for this research. The first.
termed crash report data, came directly from FDOT databases. The
data set was limited to coded data extracted from standard Florida
Traffic Crash Reports with information collected by law enforcement
agencies. The data were left in their unimproved native condition for
comparative investigations. The second data set, termed case review
data, stemmed from manual case reviews of multiple crash data
sources. The data were collected by a diverse team of homicide
investigators, researchers, traffic engineers, and safety engineers for
the same 318 cases. A specific objective of the case reviews entailed
examination of the underlying factors contributing to a crash, espe-
cially elements related to roadway design and traffic operations. A
key source of information for the case reviews was detailed Traffic
Homicide Investigation reports obtained from the Florida Highway
Patrol and local law enforcement agencies. In addition, photographs
of crash scenes from law enforcement agencies or from the state
videolog system were carefully reviewed. When necessary, site visits
and accident reconstructions were conducted. The team compared
the data from these resources with the crash report and corrected any
missing or erroneous data. Although no data source can be guaran-
teed to be accurate, the expert team used the preponderance of the
evidence to determine the most likely circumstances of the crash. In
many cases, data elements that were missing from the original crash
reports were able to be added by using the augmented data resources.
In addition. as part of the case review process, a manual assessment
of fault was conducted for comparative purposes.

Binary logistic regression was the basis for predictive fault model-
ing in this study (6-8). According to Kim and Boski, logistic regres-
sion provides a powerful tool for measuring the association between
fault and various demographic, vehicle, roadway, and environmental
factors (4). Logistic regression models were used to identify the
variables in a data set that were most significant for predicting fault
and examine the strength of dependence. The process involved the
fitting of terms associated with fault into a logistic model to predict
the probability of fault. Stepwise logistic regression resulted in par-
simonious models that were used to identify the significant factors
influencing fault in pedestrian crashes. Driver fault and pedestrian
fault were considered independently in this research, and separate
models were developed for each.

Data transformations were used to encode data for logistic regres-
sion. Dichotomous (Boolean) indicator variables were found to be
highly indicative and were used for many of the factors. Crash report
data yielded a data set with 25 variables for investigation. A total of
27 variables were extracted from the case review data for investigation
as potential predictors of fault. A concerted attempt was made to
replicate as many variables as possible from the crash report data set
and to use a consistent coding scheme whenever feasible. The cod-
ing definitions were kept simple to enable meaningful interpretation
ol logistic regression results.

As stated above, an expert assessment of fault was established
during the case review. The predictions of the binary logistic regres-
sion models were evaluated against this expert or true assessment of
fault. The fit between the true fault assessment and the assessment
predicted by the various logistic regression models based on selected
cutoff values is summarized in the results. A simple and straightforward
measure of performance 15 the correctly classified percentage, which is
computed as the number of accurately classified cases (true positives
and true negatives) divided by the total number of cases classified.
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Two other measures of classification accuracy that are often reported
in the literature are sensitivity and specificity. Sensitivity is the per-
centage of the target group accurately classified and is also known
as the correct identification of true positives. Specificity refers to the
percentage of the complementary group that is correctly classified
and is also known as the correct identification of true negatives.

Model fit was explored and adjustments were made to limit and
control the number of misclassifications, especially the assignment
of fault to an innocent party. The predicted probabilities from the
logistic models were used to assign group membership. Initially, if
the predicted probability for a case was 0.50 or higher, also known
as the 50% cutoff value, then the case was classified as a member
of the target group. Cutoff values were adjusted on the basis of key
performance measures of the classification analysis, namely, the
percent classification accuracy, model sensitivity, and model speci-
ficity. The cutoff value was adjusted to ensure a minimum specificity
of 95% for driver fault and 90% for pedestrian fault. This meant that
no more than 5% and 10% of innocent drivers and pedestrians,
respectively, were misclassified as being at fault.

MODEL DEVELOPMENT

Three techniques of fault assessment were considered in this study.
The first method, the expert assessment, was designated the true fault
condition and served as a control for other fault assessment schemes,
The second method used the current fault assessment algorithm used
by FDOT. The third method uses binary logistic regression to predict
fault on the basis of the values of the various data about the crash.
Several models were developed by this method by using either crash
report data exclusively or case review data based on additional data
resources.

Expert Assessment

The expert assessment refers to the fault determined by a multi-
disciplinary team that performed case study reviews. The expert
assessment represents the true or actual condition of pedestrian or
driver fault for this study. According to the expert assessment, as
shown in Table 1, 83% of the pedestrians in fatal pedestrian accidents
were at fault in the crashes. The expert fault assessment served as a
control for the evaluation of pedestrian and driver fault modeling
results and evaluation of the current FDOT algorithm. The use of a
reliable control is essential for evaluation of the results of automated
prediction or classification techniques: however, it is usually imprac-
tical and cost prohibitive to use such a control with a large number

TABLE 1 Expert Fault Assessment Results

Driver at Fault

Pedestrian
at Fault No Yes Total
No 12 42 54
(3.8%) (13.2%) (17.0%)
Yes 219 45 264
(68.9%) (14.2%) (83.0%)
Total 231 87 318
(72.6%) (27.4%) (100%)
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of cases. Expert assessment was possible in this study because man-
ual case reviews of the numerous data sources were conducted by a
team of engineering and crash reconstruction specialists. To avoid
potential biases, the team members were selected for their experi-
ence and objectivity and were trained in the evaluation of pedestrian
crashes.

Current FDOT Algorithm

The current method used by FDOT to assess fault in pedestrian cases
performs poorly when it is evaluated against the expert fault assess-
ment. The FDOT algorithm does not predict fault correctly in nearly
half of the cases, with correct classifications of only 56% for pedes-
trian fault and 58% for driver fault. For pedestrian fault, the main type
of misclassification was a false negative, which occurred 138 times
(43% of the cases). Error in the FDOT method of assessing fault can
be attributed to a failure by the algorithm to classify a considerable
number of at-fault pedestrians when a case review revealed that the
pedestrian was indeed responsible. This problem is mirrored by
driver fault, with the FDOT algorithm showing that drivers were too
often classified as at fault when they were not, as exhibited by a high
false-positive rate (112 occurrences, or 35% of the cases).

A false-positive result is considered a more grievous error than a
false-negative result, in part because of the underlying commitment
to presume innocence until guilt is proven and a corresponding desire
not to implicate innocent parties. In the arena of law enforcement,
this would be of paramount importance. Safety-related counter-
measures are aimed at two different groups of people: those who are
at fault and those who are not. It is desirable to distinguish clearly the
characteristics of the at-fault group with a high level of discernment.

The current fault prediction generated by the FDOT algorithm
performs poorly because it relies on the faulty assumption that crash
data collection and reporting techniques are consistent. The low false-
positive rate for pedestrian fault (three occurrences, or 1% of the
cases) is commendable and dispeis criticisms alleging a propensity
by state agencies in Florida to hold pedestrians at fault in crashes.
However, the lack of sensitivity in the current FDOT algorithm and
the failure to detect at-fault pedestrians are genuine deficiencies.
The main reason for the high false-negative rate is the dependence
on the section number for classifying fauit. As described above,
some officers. unaware of the consequences, place information for
a driver who is not at fault in section one of the crash report, thereby
leading to a misclassification of fault by the FDOT algorithm. The
information contained in the narrative of the crash report or in the
homicide investigation documents, as extracted for this study, con-
tained the case details necessary for correct fault assessment. Driver
fault classification results support the same findings.

Binary Logistic Regression Modeis

To improve upon the fault assessment of the current FDOT algorithm,
fault prediction models based on binary logistic regression were
developed. Pedestrian fault was considered independently of driver
fault. As such, two sets of models were created to make use of the
data taken directly from crash reports. The structure of each model
is as follows:
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where

p = probability of fault,
By = constant term,

BB; = ith coefficient (logit), and

X, = value of ith independent predictor variable.

Tahle 2 presents various goodness-of-fit siatistics for the fault mod-
els and describes the accuracies of the predictive models compared
with that of the expert assessment presented in Table 1. As summa-
rized in Table 2, the first set of models (Models P1, P2, and P3) pre-
dicted fault among pedestrians, whereas the second set of models
(Models D1, D2, and D3) predicted fault among the drivers striking
pedestrians. For Models P1 and D1, crash report data were left in the
native condition as obtained from FDOT database extracts, which
has a number of missing and erroneous entries and does not include
crash narrative information. Models P2 and D2 are based on the data
from case reviews, which are augmented in both scope and accuracy.
as described above. Models P3 and D3 used the exact same variables
from the crash report data as initial Models P1 and D1, respectively:
however, the data were taken from case reviews, meaning that missing
and incorrect values were replaced whenever possible.

Originally, 30 variables were educed from the source data: five
variables were used as identifiers, whereas the remaining 25 variables
were investigated as potential predictors of fault. Variables that were
significant (at the 90% confidence level) were identified by using
forward and backward stepwise logistic regressions. As shown in
Table 2, after stepwise variable elimination, the models contained
nine or 10 variables, whereas the driver fault models contained six
to 11 variables.

Each prediction model results in a probability that the person was at
fault. A cutoff value of .5 maps probabilities above .5 to true (at fault)
and those below .5 to false (not at fault). The classification cutoff
value was adjusted from .5 to the value that maximized sensitivity
(the percentage of the target group accurately classified) and specificity
(the percentage of the other group accurately classified). Compared
with the expert or true assessment of fault, Table 2 shows the number
of false positives and false negatives with both the default cutoff value
and the improved cutoff value (e.g., .84 for Model P1). It shows that
Models P2 and D2, described in more detail below, classify fault
correctly in the highest percentage of cases involving drivers and
pedestrians, respectively.

The models that use crash report data only (Models PI and D1)
show that the use of supplementary FDOT data, even without any
data accuracy improvements, is profitable for fault prediction. The
primary benefit of the models that use crash report data is that
they offer a significant increase in accuracy over that provided by
the classification of the FDOT algorithm and require limited data
handling. By relying on the unimproved data that are already housed
in state databases, the feasibility of using more fields or data to predict
fault is high and the costs and other barriers to implementation are
kept low. Although dependence only on FDOT data is the primary
benefit of these models, it is also a weakness because the data housed
i the FDOT databases have been shawn to be of reasonably poor
quality (2, 9, 10). The lack of quality data leads to limitations in model
capability. Although the false-positive rate was kept low by improv-
ing the model fit. the number of false negatives is large enough to
warrant improvement efforts aimed at better detecting those who are
actually at fault.
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TABLE 2 Summary of Logistic Regression Fault Model Results
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Pedestrian Fault Models

Driver Fault Models

P1 P2

P3 Dl D2 D3

Model features

Source of data Crash report Case review

Case review

Crash report Case review Case review

Independent variable Significant Significant Equivalent Significant Significant Equivalent
selection criteria (p-value (p-value to those in (p-value (p-value to those in
<0.10) <0.10) model P1 <0.10) < 0.10) model D1
Logistic regression model
Number of model variables 10 9 10 & 11 6
Sig. variables with p < .05 8 8 6 <] 7 -+
chi” 146.54 220.33 162.65 127.77 252.19 215.70
Prob > chi? 0.0000 0.0000 0.0000 (.0000 £.0000 0.0000
Log likelihood =71.604 -34.710 -63.551 -122.715 —61. 504 —78.751
Pseudo R? 0.506 0.760 0.561 (.342 (1.676 0.578
Summary stats for fitted model: default (0.5) cutoff
False positives 23 7 17 16 8 11
False negatives 11 4 10 35 17 24
True positives 253 260 254 52 70 63
True negatives 31 47 37 215 223 220
Sensitivity 95.8% 98.5% 96.2% 59.8% 80.5% 72.4%
Specificity 57.4% 87.0% 68.5% 93.1% 36.5% 95.2%
Correctly classified 89.3% 96.5% 91.5% 84.0% 92.1% 89.0%
Explore nature of fit: lroc
Area under ROC curve 09403 0.9844 0.9521] 0.8655 0.9748 0.9568
Improve fit: set cutoft
Cutoff 0.84 0.620 0.790 0.62 0.420 0.450
ROC area 0.8817 (0.9423 0.9064 0.7499 0.9001 (L.BT785
Std. err. 0.0227 0.0204 0.0219 0.0278 0.0208 0.0225
Summary stats for final model: adjusted cutoff
False positives 5 5 3 12 ] 11
False negatives 38 6 25 39 14 17
True positives 226 258 239 48 73 70
True negatives 49 49 49 219 222 220
Sensitivity (%) 85.6% 97.7% 90.5% 55.2% 83.9% 80.5%
Specificity (%) 90.7% 90.7% 90.7% 94.8% 96.1% 95.2%
Correctly classified (%) 86.5% 96.5% 90.6% 84.0% 92.8% 91.2%

Sig. = significant; ROC = receiver operating characteristic: std, err, = standard error.

Fault prediction models based on data obtained through case study
reviews (Models P2 and P3) were created to overcome the effects of
the poor and erroneous data that limited the predictive capabilities
of models based only on crash report data. Not only are the accuracies
of case review data improved over those of crash report data, but
also the case review data contain additional information and vari-
ables stemming from the detailed case study reviews. Independent
variables were drawn from a high-quality data set containing infor-
mation ranging from human factors to environmental and roadway
factors.

Models that use data from case reviews benefit from a sizable
increase in predictive capability over that possible with the existing
FDOT algorithm and even from the considerable improvements in
accuracy over those for the models that use crash report data. Model

results can be used to ascertain variables that are significant for the
determination of fault without being hmited to the information
coded on a crash report. The primary source of improvement was
from the increases in model sensitivity over those of the crash report
data models. Pedestrian fault Model P2 was superior to all other
models in terms of classification accuracy (96.5%), sensitivity (98%),
and specificity (91%). By using the pedestrian fault model. only 11 of
318 pedestrians were misclassified. Driver fault Model D2 was the
next best model in terms of overall performance. A major drawback to
the implementation of these models is the reliance on high-quality
data, which are costly and time-consuming to obtain.

Another set of models was used to examine whether the source of
improvements in predictive capability between models based on crash
report data (Models P1 and D1) and those based on case review data



[8))]
(8%}

(Models P2 and D2) was the increased amount of data or the improved
data quality. Models P3 and D3 used the exact same variables from
the crash report data as initial Models P1 and D1. respectively; how-
ever, the data were taken from case reviews, meaning that missing
and incorrect values were replaced whenever possible. The results
of the classifications from the analogous fault models proved that
improvements in data quality improve the ability to predict fault.
Pedestrian fauft Models P1 and P3 used the same variables. yet the
model that used the case review data outperformed the model that
used crash review data in all measures. The performance measure
used to gauge model improvement was the proportion correctly
classified. which increased from 86.5% to 90.6%. In the case of the
anajogous driver fauft model, the findings more strongly suggest
that the model based on corrected (case review) data (Model D3)
outperforms the model based on crash review data (Model D1)
in all measures. In both cases, the increase in model sensitivity
means that higher-quality data help capture the at-fault individuals.
However. neither model performs as well as the models based on
full case study data (Models P2 and D2), which are both accurate
and abundant.

RESULTS AND DISCUSSION OF RESULTS

The logistic regression fault models are discussed individually, start-
ing with two primary pedestrian fault models (Models P1 and P2),
followed by the two primary driver fault models (Models D1 and D2).
The preferred model of the two depends on the intended usage.
Models based on crash report data (Models P1 and D1) suggest which
variables can be used to improve fault prediction in pedestrian cases
when data are limited to those that are stored in the same format and
that are of the same quality as the data collected by law enforcement
agencies on crash reports. The models that use case review data
(Models P2 and D2) reveal the factors that influence fault prediction
the most when quality and quantity can be improved by manual case
reviews of additional data sources. All models provide guidance
on factors that are relevant for determining fault in fatal pedestrian
crashes.
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Pedestrian Fault Modeling by Using Data
from Crash Reports

Table 3 displays the statistically significant variables in the model
that uses crash report data to predict pedestrian fault (Model P1).
Each row describes the variables that were found to be statistically
significant after the stepwise regression. The odds ratio, which com-
pares the odds of paositive outcomes in a set of test cases with the
odds of positive outcomes in a set of control cases, is an exponen-
tial function in logistic regression. For instance, an odds ratio of
12.704 (¢***) means that an intoxicated pedestrian is 12.704 times
more likely to be at fault than a sober pedestrian. The z-statistic.
p-value, and 95% confidence interval describe the confidence that
can be placed in those results. For instance, a p-value of .075 (greater
than .05) means that one cannot be 95% confident that driver gender
is a significant variable in predicting pedestrian fault. The fact that
the 95% confidence interval includes the value of 0 shows the same
information. The data in Tables 4 through 6 are interpreted similarly.

Table 3 shows that several factors other than section number and
citation information influence the determination of fault. Factors
that lead to a higher probability of pedestrian fault are pedestrian
intoxication, a male driver striking the pedestrian, low light conditions,
and an increase in the speed limit. On the other hand, if a driver is
intoxicated, cited, or assigned a contributing factor on the crash
report, then the pedestrian is less likely to be at fault. Other factors
that lead to a decrease in the chance that a pedestrian is at fault is when
a crash is investigated by the Florida Highway Patrol, when there
are wet roads, and when an officer assigns the pedestrian a section
number higher than the one on the crash report form (the sections
typically used for not-at-fault drivers or pedestrians).

Pedestrian intoxication is the most relevant variable influencing
pedestrian fault. As stated above, an intoxicated pedestrian is almost
13 times more likely to be at fault than a sober pedestrian. The most
relevant variable decreasing the likelihood that a pedestrian is at
fault is driver contributing cause, which is a variable that indicates
that a contributing cause had been assigned to the driver by the
investigating officer. This shows that there is a correlation between
the willingness of an officer to assign a contributing cause to the

TABLE 3 Pedestrian Fauit Model Using Crash Report Data [Model P1)

95% Conf, Interval

Odds

Variable Coef. (B) Std. Err. z P Ratio Low High

Pedestrian intoxicated (0=N, 1=Y) 2.542 2.77 0.006 12.704 0.7428 4.3411
Driver gender (=M, 2=F) 0.763 .78 a.075 2.145 —(1.0782 1.6047
Low lighting” 0,408 2.73 0.006 1.504 0.1157 0.7011
Speed limit 0.035 2.48 0.013 1.036 0.0074 0.0632
Driver intoxicated (0=N, 1=Y) —1.217 —-1.67 0.096 0.296 -2.648 0.2145
FHP reported (0=N, 1=Y) =1.321 -2.52 0.012 0.267 -2.347 =0.2953
Wet road ((=N, 1=Y) -1.858 -2.53 0.011 0.156 —3.298 -0.4183
Driver cited (0=N, 1=Y) -1.905 0.592° -3.22 0.001 0.149 —3.065 —0.7454
Pedestrian section number —1.980 —4,33 <01 (0.138 -2.875 —1.0843
Driver contributing cause (O=none, l=any) —2.005 -4.19 <.001 0.135 —2.943 —-1.0677
Constant () 4.075 4.05 < (0] nia nfa n/a

Dependent variable = ped_fault2: number of observations = 318; pseudo R* = .5058: log likelihood = —71.604; chi-square likelihood
ratio = 146.534 { 10 degrees of freedomy): p-value = <0001 ; coef, = coelficient; conf. = confidence: FHP = Florida Highway Patrol;

N=no; Y = yes; M = male; F = female; n/a = not applicable.

(0 =daylight. 1 = dusk. 2 = dawn, 3 = dark with streetlights, 4 = dark no streetlights).



TABLE 4 Pedestrian Fault Model Using Case Review Data (Model P2)

95% Conf. Interval

Odds

Variable Coef. () Std. Err. z P Ratio Low High

Pedestrian mental state 1.334 0.263 5.07 <001 3.798 0.8184 1.8504
Number of lanes attempted to cross 0.566 0.157 362 <.001 1.762 0.2593 0.8731
Driver age 0.074 0.032 2,29 0.022 1.077 0.0107 0.1368
Pedestrian age —.050 0.017 -2.86 0.004 0.951 ~0.0838 =0.0157
Driver behavior class” —.392 " 0.152 -2.57 0.01 0.675 -0.691 -0.0937
Pedestrian exit vehicle (D=N, 1=Y) -2.571 0.719 -3.58 <.001 0.076 -3.9807 ~-1.1618
Pedestrian section number —2.839 0.714 -3.98 <.001 0.058 -4.2381 -1.4399
Pedestrian inconspicuous (0=N, [=Y) -3.259 1.913 -1.70 0.089 0.038 —7.0087 0.4917
Driver cited (=N, 1=Y) -3.505 0.931 —3.77 <01 0.030 -5.3297 —1.6809
Constant () 4.870 2.005 2.43 0.015 n/a n/a nfa

Dependent variable = ped_fault3; number of observations = 318: pseudo &7 = 7604 log likelihood = —34.711: chi-square likelihood
ratio = 220,33 (9 degrees of freedom): p-value = <.0001.
a({) = not in categories 1-5, | = inattentive/distracted, 2 = error in perception, 3 = decision error, 4 = alcohol/drug impairment.

5 = suicide, Alzheimer’s or other mental disorder).

*(0) = not in categories 1-7, | = inattentive/distracted, 2 = error in perception, 3 = decision error, 4 = overcorrected, 5 = speed,
i 2 pe

6 = alcohol/drug intoxication, 7 = incapacitation),

TABLE 5 Driver Fault Model Using Crash Report Data (Model D1)

95% Conf. Interval

Odds

Variable Coef. (B.) Std. Err. z P Ratio Low High
Driver contributing cause (O=none, l=any) 2,475 0.360 6.88 <.001 11.884 1.7705 318
Driver speeding (0=N, 1=Y) 2.334 0.578 4.04 <.001 10.316 1.2006 3.4669
Driver intoxicated (0=N, 1=Y) 1.887 0.583 3.24 0.001 6.601 0.7442 3.0302
Driver cited (=N, I=Y) 1.402 0.508 2.76 0.006 4.064 0.4061 2.3983
Driver gender (1=M. 2=F) -(0.568 0.292 -1.94 0.052 0.566 —1.1413 0.0048
Pedestrian intoxicated (0=N, 1=Y) ~1.049 0.440 =2.38 0.017 0.350 =1.911 —0.1868
Constant () -1.385 0.387 -3.58 <.001 nfa nfa nfa
Dependent variable = dr_fauli2; number of observations = 318; pseudo B* = .3424; log likelihood = —122.715; chi-square likelihood
ratio = 127.77 (6 degrees of freedom): p-value = <.0001.

TABLE 6 Driver Fault Model Using Case Review Data (Model D2)

95% Conf. Interval
Odds

Variable Coef. ([3) Std. Err. Z P Ratio Low High

Driver cited (0=N, 1=Y) 2.179 0.574 38 <.001 8.841 1.0551 3.3038

Driver intoxicated (=N, I=Y) 1.956 1.198 1.63 0.102 7.073 —0.3919 4.3044

Driver mental state® 1.402 0.202 6.95 <.001 4.065 1.007 1.7977

Distance to signal® 0.412 0.169 2.44 0.015 1.510 0.0806 0.7442

Roadway ADT <.001 <.001 2.12 0.034 1.000 1.22e-06 0.00003

Speed limit —0.049 0.029 —1.69 0.091 0.952 —0.1055 0.0078

Number of lanes crossed -0.232 0.142 -1.63 0.103 0.793 —0.5103 0.0467

Pedestrian mental state -0.712 0.164 -4.33 <.001 0.491 —1.0337 —0.3895

Driver gender (1=M, 2=F) -0.971 0.463 =21 0.036 0.379 -1.8796 ~0.0631

Driver section number -1.713 0.559 -3.07 0.002 0.180 -2.8085 —0.6184

Wet road (0=N, 1=Y) ~2.299 1.422 -1.62 0.106 0.100 -5.0859 0.4879

Constant () 3.083 1.426 2.16 0.031 n/a n/a n/a

Dependent variable = dr_fauli3; number of observations = 318; pseudo K* = .6758; log likelihood = —601.504: chi-square
likelihood ratio = 252.19 (11 degrees of freedom); p-value = <.0001; ADT = average daily traffic.
“(0) = not in categories 1-7, | = inattentive/distracted, 2 = error in perception, 3 = decision error, 4 = overcorrected, 5 = speeding,

6 = alcohol/drug intoxication. 7 = incapacitation).

() = not a factor/blank, 1 = less than 200 ft, 2 = 200 to 600 ft, 3 = 600 ft to (.25 mi, 4 = 0.25 mi to 0.5 mi, 5 = 0.5 to L.O mi,

6 = greater than 1 mi).

(0= not in categories 1-5, | = inattentive/distracted, 2 = error in perception. 3 = decision error, 4 = alcohol/drug impairment,

5 = suicide, Alzheimer’s or other mental disorder).
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driver, thereby increasing the propensity for the driver to be at fault
and decreasing the chances that the pedestrian is at fault. The vari-
ables included in the model support the notion that driver fault and
pedestrian fault are interrelated. For example, driver gender indi-
cates that when a driver is a male, the pedestrian is less likely to be
at fault, Male drivers have an increased propensity for risky behavior
(11 and are thereby more likely to be assigned fault. By implication,
if the driver is at fault, then the pedestrian is less likely to be at fault.
The model also exposes the influence of an environmental condition
that is common in Florida, wet roads. When the road was wet, the
pedestrian was six times less likely to be found at fault than when the
road was dry. By modeling pedestrian fault separately from driver
fault, a particular human party is not required to be at fault, thereby
allowing a roadway or environmental condition to have been the
primary cause of a crash. In some cases. wet roads or poor lighting
could have caused a crash, relieving the need to assign fault to either
the pedestrian or the driver.

Pedestrian Fault Modeling by Using Data
from Case Reviews

The parsimonious pedestrian fault model with accurate data of high
quality extracted by case reviews (Model P2) is summarized in
Table 4. The data in Table 4 are interpreted in the same manner as
those in Table 3. as described above. The primary advantage of the
model is that it is not limited to the coded information on the crash
reports, the data in which have been shown to contain errors and lack
detail. Examination of the variables relevant in Model P2 shows that
human factors usually govern the prediction of fault, whereas roadway
and environmental factors have little influence on fault. The highly
relevant variable pedestrian mental state attempted to capture states
of metal declension. The convention was to assign the lowest code
possible by default; this code was overwritten by a higher code only
when the case evidence revealed that the pedestrian exhibited such
a condition. This means that for every increase in category for the
pedestrian mental state variable, the odds that the pedestrian was at
fault increases by a factor of ¢ (3.798). (See the footnote of Table 4
for details on the coding scheme.) For a pedestrian who was found
to have an impairment caused by alcohol or drugs (Class 4), the odds
of being at fault over a pedestrian in a normal mental state was 208
(3.7984): if the pedestrian was suicidal, the odds of being at fault were
790 (3.7987) times greater. Clearly, impairment caused by alcohol
or drugs and suicidal behavior greatly increased the odds that a
pedestrian was at fault.

According to the model, the greater the number of lanes that a
pedestrian tried to cross before being hit. the more likely it is that he
or she was at fault. However, pedestrian fault decreased greatly when
a driver was cited, when a pedestrian had exited a vehicle. or when
a pedestrian was assigned a higher section number on the crash
report. Another finding was that a lack of pedestrian conspicuity
decreased the chance that the pedestrian was at fault. If conspicuity
was determined to be a factor, that is, if the pedestrian was hard to
see, then the pedestrian was 26 times (1/0.038) less likely to be at
fault. Typically. in this study, conspicuity in crashes was related to
an environmental condition, for instance. thick fog, or to the fact that
the pedestrian was wearing dark clothes at night in an area with no
streetlights. The role of conspicuity in pedestrian fault prediction
exemplifies the tendency to exonerate pedestrians of fault if any
reasonable alternative is present.
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Driver Fault Modeling by Using Data
from Crash Reports

Intuitively, the variables used to predict driver fault in the driver
fault model with crash report data (Model D1), as shown in Table 5,
make sense. If the driver was assigned a contributing cause, was
speeding, was intoxicated, was cited, or was a male, then the prob-
ability of driver fault increased. On the other hand, if the pedestrian
was intoxicated, then the driver was less likely to be at fault. The most
relevant variable in the model is driver contributing cause, which,
like the pedestrian contributing cause variable. is a binary variable
indicating whether any contributing cause was assigned (o the driver.
As with the pedestrian contributing cause variable, this variable shows
that there is a correlation between the willingness of an officer to
assign a contributing cause Lo the driver and the propensity of the
driver to be at fault. The other two measures highly relevant in
predicting fault are whether the driver was intoxicated and whether
the driver was cited for a legal infraction. One possible interpretation
of the odds ratios is that a driver to whom a contributing cause is
assigned, who is speeding, and who is intoxicated is more than
800 times (11.88 x 10.32 x 6.60) more likely to be at fault than a
driver who is coded with no improper driver action and who is
neither speeding nor intoxicated.

Driver Fault Modeling by Using Data
from Case Reviews

Another model for predicting driver fault is the parsimonious model
that uses case review data (Model D2) that are accurate and of high
quality. as summarized in Table 6. This model is useful for research
or other applications in which the highest level of predictive accuracy
is desirable and the resources exist to augment and improve the quality
of the data.

The driver mental state variable distinguishes between different
driver behaviors and actions in order of decreasing frequency. Risky.
irresponsible, or other careless driver actions, such as inattention,
errors in perception, decision-making errors, overcorrecting, speed-
ing. alcohol or drug use. and even incapacitation, increased the odds
that a driver was at faull. Roadway and environmental factors also
influence driver fault in this model: the farther that a crash was from
a signal, the more likely it was that the driver was at fault. Driver fault
decreased with an increase in speed limit and the number of lanes
crossed by the pedestrian before the crash. When the road was wet.
the driver was 10 times (1/0.100) less likely to be found at fault as
when the road was dry.

SUMMARY OF FINDINGS

The objective of this research was to compare the state of fault pre-
dicted by various logistic regression models with the true state of fault
determined by an expert assessment and to evaluate the predictive
capabilities of the fault models. The fault models were based on high-
quality data extracted from case studies and also existing data housed
by FDOT. The current FDOT algorithm for assigning fault, which
relies primarily on the section number of the drivers or pedestri-
ans in the crash and citations given, was found to be error prone in
pedestrian cases. The bulk of the error was due to the failure of the
FDOT algorithm to identify at-fault pedestrians and its tendency to
wrongly classify drivers as at fault. The logistic regression models
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proved to be more accuorate than the FDOT method for assigning
fault in pedestrian crashes as a result of the use of additional rele-
vant predictor variables coupled with the use of more accurate data.
In both the pedestrian fault and the driver fault models, the differ-
ence in predictive capability was shown to be significant at the 95%
confidence level.

Within the logistic regression models, those that used raw crash
report data only (Models P1 and D1) were able to predict fault
accurately in 84% to 87% of the cases (whereas the current FDOT
algorithm had only 56% to 58% accuracy): those that used corrected
crash report data (Models P3 and D3) were able to predict fault
91% of the time: and those that used full case study data (Models
P2 and D2) were able to predict fault in 93% to 97% of the cases.
Models P1 and DI showed that the prediction accuracy couid be
improved by fully using all of the data available on the crash
report to predict fault rather than relying only on the section num-
ber and the citations given. Models P3 and D3 showed that the
correction of errors in those data improved the accuracy even fur-
ther. So, when additional data resources are not available, simply
improving the quality of the crash report data would result in
increases in predictive capability. This outcome shows the impor-
tance of data accuracy in both the collection and the transcription
of crash records data. However, to obtain the highest predictive capa-
bility, full case studies could be used: models that used full case stud-
ies produced even more accurate fault predictions than those that used
corrected crash report data, but this was at the expense of an addi-
tional effort in the collection and processing of the data, The factors
found to be significant when fault in pedestrian cases was considered
included mental state, alcohol consumption, and the ages of the
driver and the pedestrian; pedestrian status as a former vehicle occu-
pant: pedestrian conspicuity: the presence of driver citations: and the
wetness of the road surface. It is recommended that parties interested
in modeling fault collect these data in such crashes,

A [imitation of this study was the narrow focus, in that the study
looked only at fatal pedestrian crashes occurring on state roads in
Florida. Future efforts that include nonfatal pedestrian crashes would
be valuable. Fatal crashes were chosen for this study in part because
of the detailed data in the Traffic Homicide Investigation report.
However, because the research showed that improved predictions
are possible only when the data fields from the original crash report
are used, the work could be extended to nonfatal crashes, Work could
be expanded to data from other states or to the prediction of fault
among subgroups of pedestrian crashes. As other states (e.g., linois
and Michigan) use a similar approach of placing the at-fault driver
or pedestrian in the first section of the crash report, the effect of false
positives may be of interest to practitioners elsewhere in the country:
however, the overall examination of driver and pedestrian fault would
be universally applicable.

Findings of high rates of pedestrian fault do not minimize the
importance of providing roadway features for safe pedestrian travel.
For instance, a companion study showed that in more than half of
the pedestrian fatalities that involved crossing the road without a
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crosswalk, no protected crossings were available within 600 ft of the
selected crossing location and that in almost 25% of the cases, the
nearest protected crossing was more than a quarter of a mile away (9).
Consideration of potential pedestrian activity in roadway design and
traffic operation decisions can help ensure safe, legal pedestrian travel.
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