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Abstract

Input=output (I=O) linearization via state feedback provides a convenient framework for designing controllers for multivariable
nonlinear systems. However this approach does not account for parametric uncertainty which may lead to loss of stability and
performance degradation. In this paper, a multi-model H2=H∞ approach is utilized to design a robust controller for minimum phase
multivariable nonlinear systems that are subject to parametric uncertainty. It is 4rst shown that a state feedback (inner loop) based
on nominal parameters introduces nonlinear perturbations to the linear sub-system and results in loss of decoupling. The uncertain
system is characterized in a form that provides a framework for robust controller design. Recent results from linear robust control
theory are utilized to design an outer-loop controller to account for the parametric uncertainty. This methodology is illustrated via
simulation of a regulation problem in a continuous stirred tank reactor. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last two decades, there has been a signi4cant
e9ort in the development of the theoretical foundations
of the di9erential geometric approach to design nonlinear
controllers for multivariable nonlinear systems (Isidori,
1995; Nijmeijer & der Schaft, 1990). One of the main
contributions of the di9erential geometric approach is
input=output (I=O) linearization, which seeks to reduce
the original nonlinear system to a linear one in an input–
output sense, via state feedback (Singh & Rugh, 1972;
Isidori & Ruberti, 1984). In the multivariable case, one
seeks to design a feedback that reduces the system, from
an input–output sense, to an aggregate of independent
single input, single output (SISO) linear channels and
is referred to as a noninteracting control or decoupling
problem (Isidori, 1995). Once this is achieved, it is pos-
sible to impose any desired stable dynamics around each
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individual SISO linear system via pole placement. For
instance, Daoutidis, Soroush, and Kravaris (1990) and
Daoutidis and Kravaris (1991) applied this approach for
control of chemical reactors. Enns, Bugajski, Hendrick,
and Stein (1994) and Morton (1995) used this approach
for the control of nonlinear aircraft models.
This design methodology assumes the availability of

an accurate model for the nonlinear system to achieve
I=O linearization. However, in most practical cases, the
nonlinear model is only an approximate representation
of the actual plant. In particular, the model is usually
developed from scanty laboratory data and thus there is
uncertainty in the model parameters (e.g. rate constants,
heat transfer coeDcients, mass transfer coeDcients etc.).
In this situation, the issue of how to design the outer
loop becomes important because due to the parametric
uncertainty, the I=O linearizing feedback based on the
nominal model is (i) unable to cancel the nonlinearities
exactly and (ii) is no longer an aggregate of independent
SISO channels. The outer loop has to be designed in a
robust manner to cope with this parametric uncertainty
as well as the e9ect of interacting channels.
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The issue of robust controller design in the I=O frame-
work for nonlinear systems has been attracted attention
recently. However results are available primarily for
SISO systems; the controller design issues for MIMO
systems in the face of parametric uncertainty are not
well understood. Two di9erent approaches have been
followed in the literature for uncertain SISO systems.
The 4rst approach considers the e9ect of the uncertainty
in the nonlinear model and use nonlinear techniques to
account for the uncertainty. Most of these techniques are
Lyapunov based (see for instance Kravaris & Palanki,
1988; Chou & Wu, 1995) and are applicable only when
certain matching “conditions” are satis4ed. The sec-
ond approach considers the e9ect of uncertainty as a
perturbation to the I=O linear model and use linear ro-
bust control techniques to account for this uncertainty.
For instance, Christo4des, Teel, and Daoutidis (1996),
and Christo4des and Daoutidis (1997) developed robust
control strategies for a class of two time-scale sys-
tems where the perturbations aDnely multiply the “fast”
states. Kolavennu, Palanki, and Cockburn (2000), uti-
lized a multi-model H2=H∞ approach to design a robust
outer loop to account for inexact “linearization” due to
parametric uncertainty in I=O linearizable SISO nonlin-
ear systems. In this paper, we extend this multi-model
approach to multivariable nonlinear systems with para-
metric uncertainty that are I=O linearizable. In Section 2,
the multivariable robust nonlinear control problem is
formulated and the basic concepts of I=O linearization
of multivariable systems are reviewed. In Section 3, the
e9ect of uncertainty on the di9eomorphism for I=O lin-
earization is shown. The uncertain transformed system
is characterized in a form that provides a framework
for robust controller design. Recent results from linear
robust control theory are utilized which account for, not
only the parametric uncertainty, but also the e9ect of in-
teracting terms. Robust stability for this controller is an-
alyzed. In Section 4, this controller synthesis procedure
is illustrated via a simulation example of a regulation
problem in a multivariable continuous stirred tank reac-
tor (CSTR). Finally, in Section 5, the major conclusions
of this approach are discussed.

2. Problem formulation

Consider the following state-space model of a
multi-input multi-output (MIMO) nonlinear system with
parametric uncertainty

ẋ = f(x; �) +
m∑
i=1

gi(x; �)ui;

yj = hj(x) j = 1; : : : ; m;

(1)

where x ∈ Rn is the vector of states, u ∈ Rm is the vector
of manipulated inputs, y ∈ Rm the vector of measured

outputs, and � is a vector of uncertain parameters that
takes values in a compact set � ⊂ Rp. The objective is
to design a controller such that the closed loop system is
stable and certain performance objectives, e.g., tracking,
disturbance rejection, etc., are satis4ed for all � ∈ �.
A large class of uncertain nonlinear chemical pro-

cesses, such as liquid phase reactors and distillation
columns can be modeled as Eq. (1). Nonlinearities ap-
pear very often in chemical process models derived either
from 4rst principles (e.g. Arrhenius relation, radiation
heat transfer) or empirically (e.g. power law models,
Michaelis–Menten models). Furthermore, the process
parameters (e.g. reaction rates, heat transfer coeDcients)
in the model are not exactly known; this introduces un-
certainty in the model. Hence advanced process control
algorithms are needed to design robust controller for
these nonlinear systems. To design a robust controller
for these systems, a multi-loop design approach is pro-
posed. The inner loop uses state feedback to linearize the
nominal process dynamics in the I=O sense. The outer
loop controller is a robust controller that guarantees
performance despite uncertainty in the model.
The following terms are reviewed from the literature

Isidori, 1995) forMIMO systems. This review of standard
results will be used in the next section to design a robust
controller in the presence of parametric uncertainty.

De�nition 1 (Isidori, 1995). A nonlinear MIMO system
of the form (1) is said to have a relative degree ri with
respect to an output yi if the vector

LgLkfhi(x), [Lg1L
k
fhi(x) : : : LgmL

k
fhi(x)] = N0;

k = 0 to ri − 2;
LgLkfhi(x), [Lg1L

k
fhi(x) : : : LgmL

k
fhi(x)] �= N0;

k = ri − 1:

(2)

Essentially ri is the smallest integer k for which the vector
LgLk−1f hi(x) has at least one non-zero component. In other
words, at least one of the inputs uj a9ects the output yi
after ri integrations.

De�nition 2 (Isidori, 1995). The characteristic matrix
of the system is de4ned as

�(x) = LgLr−1f h(x)

=



Lg1L

r1−1
f h1(x) : : : LgmL

r1−1
f h1(x)

...
. . .

...

Lg1L
rm−1
f hm(x) : : : LgmL

rm−1
f hm(x)



m×m

; (3)

If a system represented by Eq. (1) has well-de4ned rela-
tive degree ri for all outputs yi with r=

∑
ri (r 6 n) and
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the characteristic matrix (3) is full row rank, then there
exists a di9eomorphism (�; z) = T (x) given by

z(i) =




z(i)1

z(i)2
...

z(i)ri



=




hi(x)

Lfhi(x)

...

Lri−1f hi(x)



; (4)

z = [z(1); z(2); : : : ; z(m)]T;

�=




�1

�2
...

�n−r



=




�r+1(x)

�r+2(x)

...

�n(x)



; (5)

where �r+1; �r+2 · · ·�n are chosen such that

[dz(1)1 ; dz(1)2 ; : : : ; dz(1)r1 ; : : : ; dz
(m)
1 ;

dz(m)2 ; : : : ; dz(m)rm ; : : : ; d�r+1; d�r+2 : : : d�n]

are linearly independent. This transforms the system (1)
to the normal form:

�̇= q(z; �) +
m∑
j=1

pj(z; �)uj; (6)

ż(i)1 = z(i)2
...

ż(i)ri−1 = z(i)ri ;

(7)

ż(i)ri = �i(z; �) +
m∑
j=1

�ij(z; �)uj; i = 1; : : : ; m;

where �i=Lrifhi(x) and �ij is the (i; j)th entry in Eq. (3).
Eq. (7) represents m subsystems, each with ri states,

which form the linearizable part of Eq. (1). Once the sys-
tem has been transformed to the above normal form a
state feedback law can be designed to invert the nonlin-
earities that appear in the equations

żr = �(z; �) + �(z; �)u; (8)

where

żr =




ż(1)r1

ż(2)r2
...

ż(m)rm




�=




Lr1fh1(x)

Lr2fh2(x)

...

Lrmf hm(x)




� is the characteristic matrix (3) and u is the input vector.
Consider an input–output linearizable, minimum phase

MIMO nonlinear system, with relative degree r, that has

a well de4ned normal form for all � ∈ �. The above
de4nitions indicate that there exists a di9eomorphism
(�; z)=T (x; �) which transforms system (1) into its nor-
mal form (Eqs. (6) and (7)). This di9eomorphism results
in a linearizable subsystem if the value of � is exactly
known. However, since � is uncertain, the di9eomor-
phism has to be based on some nominal value �o of �.
This results in inexact linearization and loss of decou-
pling. This could lead to loss of stability and=or perfor-
mance degradation if a conventional I=O design is used.
To overcome this loss of stability and=or performance

the dynamics of the system obtained by using a trans-
formation based on the nominal model are studied and a
robust controller design methodology for this system is
derived in the next section. The following assumptions
are made:

(1) The nonlinear process is modeled as Eq. (1) and f
and gi are smooth vector 4elds, and h is a smooth
scalar 4eld.

(2) Model uncertainty is assumed to be represented as
uncertainty in the parameter vector �

(3) The system represented by Eq. (1) is an input–
output linearizable, minimum phase MIMO nonlin-
ear system, with 4nite relative degree r, that has a
well de4ned normal form for all � ∈ �.

(4) The relative degree with respect to each output and
stability properties of the original nonlinear system
are not changed due to uncertainty.

(5) The characteristic matrix � represented by Eq. (3)
has full row rank.

Assumption 1 is a technical assumption that ensures that
the Lie algebra required for deriving the state feedback
law can be generated. Assumption 2 states that only para-
metric uncertainty is considered and the issue of un-
modeled dynamics is not addressed in this paper. This
covers a fairly large class of chemical processes where
the dominant kinetics are well known but the parameter
estimates are poor. Assumptions 3 and 4 narrow down the
applicability of the theoretical development to the class
of systems that are input–output linearizable and mini-
mum phase with well de4ned relative degree of r for all
� ∈ �. This assumption is satis4ed in many practical
systems with parametric uncertainty (see, for instance,
Sampath, Palanki, & Cockburn, 1998; Sastry & Isidori,
1989). Since most nonlinear models for chemical pro-
cesses are developed from material and energy balances,
the model parameters (rate constants, heat and mass trans-
fer coeDcients etc.) are constant, though they may be un-
certain. Consequently, in this paper, we do not consider
the case where the model parameters are time-varying.
The case where the parameters are time-varying can be
handled by using a time-varying co-ordinate transforma-
tion (Palanki & Kravaris, 1997) or by a gain-scheduling
approach (Sampath, Palanki, & Cockburn, 1999).
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Assumption 5 ensures that the system is state controllable
and a decoupling nonlinear control law exists. The case
where the characteristic matrix is singular can be han-
dled by choosing alternative outputs as shown in Soroush
and Kravaris (1994). The assumption of 4nite relative
degree and nonsingular characteristic matrix ensures that
the input=output linearizing law results in decoupling in
the absence of parametric uncertainty (Isidori, 1995).

3. Robust controller design

In this section a methodology for the robust con-
troller design is outlined. First it is shown how system
(1) is transformed by a di9eomorphism based on nom-
inal parameters using Lemma 1. Then, the transformed
uncertain system is characterized in a convenient, ap-
proximate linear form using Lemma 2. It is shown via
Theorem 1 that this characterization provides a frame-
work for robust controller design using multi-objective
H2=H∞ synthesis. Finally, it is shown via Theorem 2 that
this controller stabilizes the original nonlinear system.

Lemma 1. The System (1) with an additive model for
uncertainty; i.e. of the form;

f(x; �) = fo(x) + �f(x; �); (9)

gi(x; �) = gio(x) + �gi(x; �) i = 1 : : : m; (10)

under the nominal transformation (�; z) = T (x; �o) and
the nominal feedback law u(x) = �o(x)−1[ − �o(x) + v]
renders the subsystem:

ż( j)i = z( j)i+1 + �( j)i ; 16 i 6 rj − 1; 16 j 6 m;

ż( j)rj = �( j)rj − �( j)� �o + vj +
m∑
k=1

(�( j)�k )vk ; 16 j 6 m;
(11)

where�( j)i =L�fLi−1fo hj(x; �)); �
( j)
� =L�gjL

rj−1
fo hj(x; �)�−1o ;

�( j)�k is the kth element of �( j)� and the subscript ‘o’ refers
to the the system at �= �o.

Proof. For the system (1) with additive model for un-
certainty, the nominal transformation (�; z) = T (x; �o) is
given by

�i = �i(x); 16 i 6 n− r;

z( j)i = Li−1fo hj(x); 16 i 6 rj; 16 j 6 m

In the new co-ordinates, system (1) can be written as

�̇i =pi(�; z) + ��i(�; z; �)

+qi(�; z)u+ �̃�i(�; z; �)u; 16 i 6 n− r; (12)

ż( j)i = z( j)i+1 + �( j)i (�; z; �); 16 i 6 rj − 1;
16 j 6 m;

ż( j)rj = �oj(x)+�( j)rj (�; z; �)+[�oj(x)+�
( j)
�1 (�; x; �)]u;

16 j 6 m;

(13)

where

��i(�; z; �) = L�f�i; (14)

��i(�; z; �) = L�g�i; (15)

�( j)i (�; z; �) = L�fLi−1fo hj; (16)

�( j)r (�; z; �) = L�fLr−1fo hj; (17)

�( j)�1 (�; z; �) = L�gLr−1fo hj; (18)

�oj(�; z) = Lrjfohj; (19)

�oj(�; z) = LgjoL
rj−1
fo hj; (20)

�oj is the jth row of the characteristic matrix. The
inner-loop controller is chosen to cancel the nominal
nonlinearities as

u(x) = �o(x)−1[− �o(x) + v]; (21)

which renders Eq. (13) equal to

ż( j)i = z( j)i+1 + �j
i ; 16 i 6 rj − 1; 16 j 6 m;

ż( j)rj = �( j)rj − �( j)� �o + vj + (�
( j)
� )v; 16 j 6 m;

(22)

where ��=��1�−1o and �( j)� is the jth row of ��. This is
same as Eq. (11).

Remark 1. The uncertainty in � induces two types of
perturbations; one that acts directly on the integrators
and one that acts on the control input v itself. Thus, v
has to be designed for robustness with respect to both
uncertainties.

Now, we characterize the uncertainty in a suitable man-
ner to design an outer loop controller. I=O linearization
uses coordinate transformation and state feedback to re-
duce the nonlinear system to a linear one. However, in
the presence of uncertainties, this method does not give a
perfectly linear model. Perturbations appear in the canon-
ical form, as nonlinear functions of z, due to the presence
of uncertainties. These perturbations are characterized so
that linear robust control techniques can be applied in the
outer loop. The perturbations acting on the chain of in-
tegrators are expanded using a Taylor series expansion
around the steady state (0) of the transformed states. This
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introduces a signi4cant part (4rst-order terms) of the per-
turbations into the state matrix (which can be expressed as
a polytopic family of systems). The higher order terms are
not neglected they are characterized as bounded distur-
bances to the linear uncertain system. The perturbations
acting on the input are also characterized so that the input
matrix can also be expressed as a polytope. To achieve
this the input perturbations are expressed as a Taylor
series around the nominal perturbations (�o). Thus we
can obtain a standard linear parameter dependent system
(with bounded disturbance inputs), that can be expressed
as a polytopic family. This procedure is elucidated math-
ematically using Lemma 2. It may be noted that this is
di9erent from the Jacobi linearization of the original non-
linear system. Only the perturbations arising due to un-
certainties are linearized but not the whole model.

Lemma 2. The subsystem of the form (11) can be char-
acterized as the following standard linear subsystem

ż = A(�)z + B(�)v+ d;

y = Cz;
(23)

where A(�); B(�) are parameter dependent matrices; d
is the vector of nonlinear perturbations represented as
external bounded disturbances; v is the vector of inputs;
y is the vector of outputs and z is the vector of states.

Proof. De4ne the following vectors of perturbations:

�� =




�(1)1
...

�(1)r1−1
...

�(m)1
...

�(m)rm−1




; (24)

�B =




�(1)r1 + �(1)� �o

�(2)r2 + �(2)� �o
...

�(m)rm + �(m)� �o



; (25)

�� =




�(1)�

�(2)�
...

�(m)�



; (26)

where ��i are the perturbations on the chain of integra-
tors in all m subsystems, �Bi are the perturbations in the
last (rith) equation of the ith subsystem and ��i are the
perturbations on the inputs in the ith subsystem. These
perturbations arise due to the uncertainty in the model
parameters. Since we assume that the uncertain parame-
ters are bounded � ∈ � and that the system is minimum
phase and has a well de4ned normal form for all �, this
implies that each of the above perturbations are bounded
for all values �. First, we characterize the perturbations
�� and �B by formal Taylor series expansion around the
steady state (0) as follows:

��i(�; z; �) = ��i(�)z + �̃�i(�; z; �); 16 i 6 r −m;
(27)

�Bi(�; z; �) = �Bi(�)z + �̃Bi(�; z; �); 16 i 6 m;
(28)

where ��i and �Bi are row vectors linear in z, which will
be introduced into the state matrix A(�). The higher order
terms �̃�i and �̃Bi will be grouped as a vector of nonlin-
ear perturbations, �A, and characterized as external dis-
turbances.
In addition to the uncertainty in the dynamic equations

representing the chain of integrators, there is also uncer-
tainty, ��(�; z; �), that acts directly on the input. This un-
certainty is characterized so that the coeDcients of the
inputs are aDne functions of the uncertain parameters.
By Taylor series expansion around the nominal parame-
ter set and steady states we can obtain

�(m)�k
(�; �; z) = �(m)�k

(�) + �̃
(m)
� (�; z; �0): (29)

To negate the e9ects of �̃�, one can use a pre4lter for the
input v (Sampath et al., 1998).
Then the system can be written as:

ż = A(�)z + �A +
m∑
i=1

bi(�)vi;

y = Cz;

(30)

where

C =




C1 0 : : : 0

0 C2 : : : 0

...
...
. . .

...

0 0 : : : Cm



: (31)

Ci is a row vector of length ri whose 4rst element is 1
and the rest all are zeros. matrix whose (ri; 1) element is
1 and the rest are zeros. The vector bi(�) is de4ned as:

bi(�) = [C̃1�
(1)
�i

C̃2�
(2)
�i

: : : C̃m�
(m)
�i
]T

+ek

(
k =

i∑
1

rj

)
; (32)
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Fig. 1. Multi-model H2=H∞ synthesis problem.

where C̃i = CiĨ ri , Ĩ ri is ri × ri square matrix similar to
the identity matrix but the ones appearing on the reverse
diagonal and ek is the kth basis vector in Rr . De4ne a
vector of nonlinear perturbations, �A, as follows:

�A = (�̃�1 ; : : : ; �̃�r−m ; �̃B1 ; : : : ; �̃Bm)
T: (33)

This vector contains the higher order terms of �̃�i and
�̃Bi . This vector of nonlinear perturbations is represented
as external bounded disturbances d ∈ D. Recall that the
perturbations are bounded for all �. Let d̃i ∈ L2[0;∞),
such that ‖d̃i‖2 6 1, 16 i 6 r. Weights Wdi are chosen
so that they capture the magnitude of the disturbance

‖�Ai‖2 6 ‖Wdi d̃i‖2; 16 i 6 r: (34)

Then the e9ects of �A can be represented by Wdd̃, where
Wd = diag(Wd1 ; : : : ; Wdr). This reduces Eq. (30) to

ż = A(�)z +
m∑
i=1

bi(�)vi +Wdd̃;

y = Cz

(35)

which is a particular form of the system represented by
Eq. (23) with B(�) = [b1 b2 : : : bm] and d=Wdd̃.

To complete the design we must 4nd a robustly sta-
bilizing controller for the uncertain system (35). This is
a linear robust control problem that can be solved via
multi-objective optimization techniques such as H2=H∞
synthesis. The advantages of using this approach are (1)
multiple performance (H2) and robustness (H∞) objec-
tives can be placed in di9erent channels of the MIMO
system, (2) constraints on pole placement can be speci-
4ed, and (3) a Lyapunov function for stability analysis
can be explicitly constructed from the solution of the op-
timization problem. Alternatively, one could utilize a (
synthesis approach as shown in Sampath et al. (1998);
however, H2 performance objectives cannot be consid-
ered.
The mixed H2=H∞ synthesis with pole placement con-

straints technique can be used for robust design when
the state space realization of the plant is aDne in �. The
multi-model H2=H∞ state feedback synthesis places the
poles such that the system has robust performance. This
problem is represented in Fig. 1. The term, w, contains
all external disturbances, e.g. d, and Z2 and Z∞ contain
the relevant errors signals that we want to maintain small
with respect to the 2-norm (average) and∞-norm (worst

case), respectively. The generalized plant G(�) repre-
sents the plant model together with performance and nor-
malization weights. The objective is to 4nd a stabilizing
controller K such that

a‖TZ∞w‖2∞ + b‖TZ2w‖22 (36)

is minimized, for all � ∈ �, where TZ∞w and TZ2w are
linear operators mappingw to Z∞ andw to Z2 respectively
and a, b are positive numbers representing the trade-o9
between the H2=H∞ objectives.
For the problem to be tractable, G should be aDne in

�. If the matrix G is not aDne, it poses a nonconvex, in-
4nite dimensional optimization problem. For this reason,
the uncertain state space model (35) is represented as a
polytopic family of systems where the state space matri-
ces are aDne functions of the uncertain parameters i.e. of
the form

A(�) = A0 + �1A1 + · · ·+ �kAk + · · ·+ �pAp (37)

where, p is number of uncertain parameters. Then the
multi-objective problem (36) is solved by linear matrix
inequalities (LMI) using the following theorem.

Theorem 1 (Khargonekar & Rotea, 1991). Consider a
polytopic family of LTI systems of the form

ż = A(�)z +Wdd̃+
m∑
i

bi(�)vi; (38)

Z∞ = C1z +D11d̃+D12v; (39)

Z2 = C2z +D22v: (40)

The state feedback that robustly stabilizes the above
system and minimizes the performance objective (36)
is given by v = Kz where K = YX−1 and X and Y are
obtained by solving the following optimization problem:

min
Y; X; Q; 22

a22 + bTrace(Q); (41)

s.t.

AkX + XATk + BkY + Y TBTk Wd XCT

1 + Y TDT
12

W T
d −I DT

11

C1X +D12Y D11 −22I


¡ 0;

(42)

(
Q C2X +D22Y

XCT
2 + Y TDT

22 X

)
¿ 0; (43)

Trace(Q)¡520 (44)

2¡220 (45)

fD(X; Y )¡ 0; (46)
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for k = 1; 2; : : : (number of parameters) where B =
[b1 · · · b2 · · · bm]; Ak ; Bk are coe>cients in the poly-
topic representation (as shown in Eq. (37)) of the pa-
rameter dependent state matrices A and B; respectively;
and 20 and 50 are upper bounds on the H∞ and H2

norms; respectively and fD(X; Y ) speci@es the pole
placement constraints.

The minimization problem posed by Theorem 1 can be
solved using standard software such as the LMI control
toolbox in MATLAB (Gahinet, Nemirovski, Lamb, &
Chilali, 1995).

Remark 2. Due to the presence of uncertainties, I=O de-
coupling is lost in the outer loop. Hence all the external
reference inputs vi a9ect each of the outputs yi. The ro-
bust controller design takes this into account in the outer
loop. A conventional I=O controller design assumes per-
fect decoupling and proceeds with a series of SISO outer
loop controllers. This may lead to loss of stability and
performance degradation in the presence of parametric
uncertainty.

Remark 3. If a linear controller K cannot be found by
solving the optimization problem (36) in Theorem 1, this
does not imply that a robustly stabilizing controller does
not exist for the original uncertain nonlinear system. This
situation can arise when a bound on �̃ cannot be estab-
lished or when the bound on �̃ is so large that the perfor-
mance level 2 cannot be satis4ed for the uncertainty.

Now, it is shown that the feedback controller found by
multi-objective synthesis robustly stabilizes the original
nonlinear system.

Theorem 2. Consider a nonlinear; uncertain system

ẋ = f(x; �) +
m∑
i=1

gi(x; �)ui;

yj = hj(x); j = 1; : : : ; m; (47)

which can be represented; using Lemma 1; as

�̇i =pi(�; z) + ��i(�; z; �)

+ qi(�; z)u+ �̃�i(�; z; �)u; 16 i 6 n− r; (48)

ż( j)i = z( j)i+1 + �( j)i ; 16 i 6 rj − 1; 16 j 6 m;

ż( j)rj = �( j)rj − �( j)� �o + vj +
m∑
k=1

(�( j)�k )vk 16 j 6 m;

y = Cz: (49)

Now consider the parametric form of Eq. (49) using
Lemma 2

ż = A(�)z +
m∑
i=1

bi(�)vi +Wdd̃;

y = Cz:

(50)

Assume that � is in a compact set; ‖d̃i‖2 6 1; and ‖Wd‖∞
is @nite. Then; a controller K that robustly stabilizes the
system (50) also robustly stabilizes the nonlinear system
(47).

Proof. According to Lemma 1, characterization of the
nonlinear perturbations that appear in Eq. (22) introduces
the linear part of the Jacobi linearized perturbations into
the state matrix, A and higher order terms as disturbances.
Since it is assumed that the zero dynamics are stable for
all values of �, to prove stability of the nonlinear system,
it is suDcient to prove that the uncertain subsystem (49)
is stable. If one can 4nd a Linear Robust Controller K
that stabilizes this uncertain system in presence of the
disturbances, then it stabilizes the subsystem (11). To see
this consider a Lyapunov function for the linear system
(35).

V = zTz (51)

If v=−Kz is chosen such that the system (35) is robustly
stable, then

V̇ = zT(A(�) + AT(�))z +
m∑
i

bi(�)vi + 2zTWdd6 0:

(52)

Now consider the nonlinear system (11) and write as,

ż = (F + �(�))z +
m∑
i

bi(�)vi + �̃(�; z; �); (53)

where

F =



F1 0 : : : 0
0 F2 : : : 0
...

...
. . .

...
0 0 : : : Fp


 ; (54)

Fi =




0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
0 0 0 : : : 0



ri×r

(55)

and �̃(�; z; �)=[�̃1; : : : ; �̃r]
T, �(�)=[�1; : : : ; �r]

T. The vec-
tor �(�) captures the linear part of Eq. (27) and Eq. (28)
and the vector �̃(�) includes the higher order terms in
these equations.
A Lyapunov function for this system is

Vn = zTz: (56)

Thus

V̇ n = zT(F + �(�) + FT + �T(�))z

+
m∑
i

bivi + 2zT�̃(�; z; �); (57)
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Given that �̃(�; z; �)6 ‖Wdd‖ it follows that
V̇ n 6 V̇ 6 0: (58)

Hence the controller K stabilizes Eq. (11). This ensures
that K stabilizes the original system (1).

4. Illustrative example

Consider a continuous stirred tank reactor (CSTR)
in which an isothermal, liquid phase, multi-component
series-parallel chemical reaction is being carried out. The
chemical reaction system is:

A→ B→ C;

A→ D:
(59)

with the rates of reaction given by

rA = k1(T )CA + k3(T )C2
A; (60)

rB = k2(T )CB − k1(T )CA; (61)

where CA, and CB represent the concentrations of species
A and B; respectively, and T represents the reactor tem-
perature. The objective is to keep the concentration, CB,
and the temperature, T , at a desired set-point by manipu-
lating the molar feedrate F=V and the heat input Q to the
reactor. This system can be modeled as

d
dt



CA

CB

T


=




−k1(T )CA − k3(T )C2
A

k1(T )CA − k2(T )CB

1
9Cp

(�H1k1(T )CA + �H2k2(T )CB

+�H3k3(T )C2
A)




+



CA0 − CA 0

−CB 0

T0 − T
9Cp

1
V9Cp



[
F=V

Q

]
; (62)

y =

[
CB

T

]
: (63)

The reaction rate constants are dependent on the temper-
ature as ki=Ai exp(−Ei=RT ). The numerical values of the
system parameters used in this study are given in Table
1. There is uncertainty in the parameter A2, it has a nom-
inal value of 1:2× 106 and may vary between 1:8× 105

and 2:2×106. Thus, the objective is to design a controller
that is robust to this parametric uncertainty.
The system is already in the normal form (Eqs. (6) and

(7)) and both outputs have well de4ned relative degree
of 1. De4ning �=CA −CAS , z1 =CB −CBS , z2 = T − TS ,

Table 1
Values of the variables in illustrative example

Symbol Value

−�H1 4:5e5 KJ
−�H2 5:0e5 KJ
−�H3 6:0e5 KJ
A1 2:0e6 min−1

A2 1:2e6 min−1

A3 1:2e6 Kmol−1 min−1

E1 5:0e4 KJ
E2 6:5e4 KJ
E3 5:7e4 KJ
9 1000 Kg=m3

Cp 4:2 KJ=Kg K
V 0:01 m3

F=V 0:1 min−1

T0 295 K
CA0 1 Kmol=min

we have,

�̇=−k1(z2)(�+ CAS)− k3(z2)(�+ CAs)2

+ (CA0 − �− CAS)u1; (64)

[
ż1

ż2

]
=




k1(z2)(�+ CAS)− k2(z2)(z1 + CBS)

1
9Cp

[�H1k1(z2)(�+ CAS) : : :

: : :+ �H2k2(z2)(z1 + CBS)

+�H3k3(z2)(�+ CAS)2]




+



−(z1 + CBS) 0

T0 − z2 − TS
9Cp

1
V9Cp



[
u1

u2

]
; (65)

y =

[
z1

z2

]
: (66)

Applying an I=O linearizing feedback based on the nom-
inal values of the parameters and using Lemmas 1 and
2 to characterize the uncertainty in A2, the following un-
certain linear subsystem results:

d
dt

[
z1

z2

]
=

[
0:0013� 5:2�× 10−5

0:0155� 6:2�× 10−4

][
z1

z2

]

+

[
1 0

0 1

][
v1

v2

]
+
[
1 0
0 1

]
Wdd: (67)

Here � is the uncertain parameter, v1 and v2 are the new
input variables, d is the vector of perturbations due to
uncertainty characterized as external disturbances andWd

is the bound on the magnitude of these disturbances.
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Fig. 2. Output pro4les for conventional I=O controller.

If there is no parametric uncertainty (i.e. d = 0, and
�=�0), then a conventional I=O linearization strategy de-
couples the system into two linear SISO loops on which
one can impose any desired linear dynamics. However,
when the feedback law, designed assuming no uncer-
tainty, is implemented on the perturbed system, exact lin-
earization as well as decoupling is lost which could lead
to performance degradation. Fig. 2 illustrates this loss
of performance when the conventional I=O linearization
design methodology is used. The controller is designed
assuming that there is no uncertainty and the poles are
placed at—1:5 and −1:5. The following feedback results,
which is implemented on the plant.

[
u1

u2

]
=




z1 + CBS 0

T0 − z2 − TS
9Cp

1
V9Cp



−1

×




v1 − k1(�+ CAS)− k2(z1 + CBS)

v2 − 1
9Cp

(�H1k1(�+ CAS) : : :

+�H2k2(z1 + CBS) + �H3k3(�+ CAS)2)


 : (68)

It is seen that when the plant parameters match the model
parameters (d=0), the set-points are tracked well. How-

ever, when the plant parameter, A2, is perturbed by 85%
the feedback law (68) does not track the desired outputs
well.
Now, the robust controller described in the previous

section is implemented on this example. The H∞ objec-
tive is to minimize the inTuence of the disturbance vector
on the output vector and the H2 objective is to minimize
the e9ect of the disturbance on the vector [z1 z2 v1 v2]
(LQG cost of control). Using the LMI control toolbox
from MATLAB the following robust feedback was ob-
tained.

[
v1

v2

]
=

[−11:0 −0:001
−0:001 −11:0

][
z1

z2

]
: (69)

Simulations were carried out for the nonlinear system for
di9erent values of A2 . It is observed that the robust I=O
linearizing control is able to keep both the outputs at the
desired setpoints despite the uncertainty in A2. The re-
sults of the simulation are shown in Fig. 3. The eDcacy
of the robust controller to regulate the system starting
from di9erent initial conditions was also studied. The re-
sults are shown in Fig. 4. It is seen that the controller
performs satisfactorily for a wide range of initial condi-
tions.
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Fig. 3. Output pro4les for robust controller (x0 = 0:15; 0:7; 390).

Fig. 4. Output pro4les for robust controller (x0 = 0:15; 1:2; 412).
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5. Conclusions

A controller synthesis procedure was developed for
minimum phase I=O linearizable, multivariable, nonlin-
ear systems that are subject to parametric uncertainty.
The controller that that results from this approach has a
multi-loop structure. The inner loop implements a non-
linear transformation based on nominal parameters of the
model. The outer loop is a multivariable controller that
not only accounts for interacting channel e9ects but also
provides robustness to uncertainties in plant parameters.
The controllers can be designed using o9-the-shelf soft-
ware and do not require restrictive matching conditions
to be satis4ed. This methodology was illustrated via sim-
ulation of a regulation problem in a CSTR.

Notation

A1; A2 Arrhenius coeDcients for rate constants
CA; CB concentrations of the species A and B
Cp speci4c heat
d disturbance vector
E1; E2 activation energies
F Towrate into the reactor
k1; k2 reaction rate constants
Lfh Lie derivative of h along f
ri relative degree with respect to output yi
T temperature
u1 : : : um original inputs
v1 : : : vm external reference inputs
V volume of the reactor
Wd weight on the disturbance
x1 : : : xn system states
zi states of the linearized subsystem
y1 : : : ym outputs

Greek letters

� nonlinear perturbation
�H1 enthalpy change of the 4rst reaction
�H2 enthalpy change of the second reaction
�i states of the zero dynamics
� set of uncertain parameters
9 density
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