A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

A space-efficient quantum computer simulator suitake for high-speed
FPGA implementation

Michael P. Frank Liviu Oniciuc, Uwe H. Meyer-Baesé* Irinel Chiorescl
®FAMU-FSU College of Engineering, 2525 Pottsdamer St., fialaee, FL, USA 32310-6046;
®National High Magnetic Field Lab., 1800 E. Paul Dirac Dallahassee, FL, USA 32310-3706

ABSTRACT

Conventional vector-based simulators for quantum compuaier quite limited in the size of the quantum circiney/ t
can handle, due to the worst-case exponential growtheof gyarse representations of the full quantum state \&s#or
function of the number of quantum operations applied. Howévisrexponential-space requirement can be avoided by
using general space-time tradeoffs long known to compléxé@orists, which can be appropriately optimized fos t
particular problem in a way that also illustrates samerésting reformulations of quantum mechanics. Inghjper, we
describe the design and empirical space/time complexigsunements of a working software prototype of a quantum
computer simulator that avoids excessive space requiremBuis to its space-efficiency, this design is weltelito
embedding in single-chip environments, permitting esggcfakt execution that avoids access latencies to main
memory. We plan to prototype our design on a standard FR@&opment board.

Keywords: Quantum computing, simulation, special-purpose architecttR&SAs, embedded design

1. INTRODUCTION

Since a scalable, widely accessible quantum computer hgstrizeen built, it is important to be able to deme@tstthe
theoretical operation of quantum computers using simuasmsdoon existing classical computing technology. Such
tools are useful for the validation and testing of new qumartigorithms in research settings, as well as foetheation

of students as well as more experienced scholars who nregubt the emerging field of quantum computing.

Unfortunately, most or all of the existing widely-avale quantum computer simulators are severely limitedersthe

of the quantum circuits that they can simulate. This istaltiee fact that nearly all of the traditional siators operate
by updating an explicit representation of the quantum statervef the simulated quantum circuit. In the worst case
(which is also the case that is typically encounteregractice, in most of the interesting quantum algorithrins),
number of nonzero elements of the state vector asee exponentially with the number of operations (gdtes)are
dynamically applied in the quantum circuit, and thereforeemses exponentially with the size of the problemeo b
solved. This means that, even when a sparse repriiserdghthe state vector is used, the available mgmarany
given platform imposes a rather severe limit on the ef the quantum circuits that can be feasibly simulated.

For example, if a given machine has 8 GB of main mentben it might only be able to simulate general quantum
circuits containing 30 or fewer nontrivial gates, simepresenting the final quantum state of such a circuit would
typically require storing ¥ = 1G eight-byte floating-point complex numbers. Furtheansince accessing main
memory (as opposed to on-chip caches) is relatiely,she large amount of memory required for simulating even
circuits of sizes somewhat below this limit can stipair the simulator’s performance.

It would be desirable to have a simulator whose céifiebiwere not so strictly limited by the availabfemory, so that
the simulator can be implemented on a fast single-chigwaie platform, and also so that it can (given sufficiene)
simulate circuits of sizes beyond the limits of ttadial simulators, with more graceful performance dégtian.

Fortunately, computational complexity theorists have loegn aware that there is a general algorithmic tramsfoon

that can be applied to reduce the space requirements ofttalggar The basic concept is simply to recalculate data
values dynamically when needed, rather than storing theaticitly. As long as an algorithm’s dataflow grapmat as
deep as it is wide, using this approach can reduce the higlrispace complexity.

* Corresponding author. umb@eng.fsu.edu; phone 1 850 410-6220; fax 1 86474t Qvww.eng.fsu.edu

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 1 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

This condition applies to the simulation of quantum conmrgutBach element of the quantum state vector atem gitep
of a quantum algorithm typically depends only on the valudsaf2 elements of the state vector at the precedapg st
These values can be recomputed on demand from the vathesn@xt preceding step, and so forth, in recursivedash
The recursion back through the entire histori}Ngifreviously applied qguantum operations requires only)SGpace on a
stack, to keep track of the result accumulated so feaclt node of the current path through the dataflow graph.

Possibly the first person to realize that this gdniéral of procedure could be applied to the calculation of quant
mechanical amplitudes was the famous physicist Richeydrfan, who in his dissertation wBtlshowed how quantum
mechanics could be reformulated in terms of a quantity hedcthe path integral, which essentially amounted to a
continuous analogue of a sum over paths through a disctafeadegraph.

When the complexity theory of quantum computing was being ofgeelin the early 1990s, it was quickly reallZed
that the same idea, back now in the discrete realmd dmilapplied to the simulation of quantum computers as well,
leading to the important complexity-theoretic relatiort 8@P [0 PSPACE, where BQP is the set of problems solvable
by probabilistic quantum algorithms with a polynomial numbeogerations (as a function of problem size), and
PSPACE is the set of problems solvable by class@apaters using a polynomial amount of memory. More gdliyer

we can shof¥ that a quantum algorithm withqubits and operations can be simulated using space+d)

Although this essential insight has been known fdeadt 16 years now, to our knowledge it has not yet bpphied to
develop a flexible and widely-available tool for simulatingrguan algorithms in such a way that the available mgmor
is not a significant limiting factor on the size oetquantum computations that can be simulated. It igdlaéof the
SEQCSim (say “SEEK-sim”) project at Florida Stateivérsity to remedy this situation by providing flexible,lwe
optimized freely-available software and hardware impteatens of a face-HEficient Quantum @mputer_Simalator.

So far, we have developed a working software protobymeir simulator in C++, and have empirically demonstt e
correctness and space-efficiency on a variety oplantest cases. We present some of these resultstionse2-4.
Next steps include the development of a more powerful pragimagnenvironment for the software version of the
simulator, as well as a performance-optimized specigdgaer hardware implementation of the simulator, to be
prototyped using a standard FPGA (field-programmable gaég)aplatform, which we will describe in section 5.
Section 6 concludes.

2. SEQCSIM ALGORITHM
The presently-available software prototype of our satwul(version 0.8) operates according to a simple pgroee

The simulator first loads a definition of the quantunewirto simulate from a set of four ASCII text input §jecalled
gconfig.txt, ginput.txt, qoperators.txt, andqopseq.txt, examples of which are shown in listings 2-5.
These files are structured in a simple throwaway filenfat, which will likely be replaced in later versioof our
simulator by a high-level quantum programming languageecbasn C++. The configuration file, given in
gconfi g. txt, specifies the width of the quantum circuit, and assigm®us named registers to specific bit-fields
within it. The quantum algorithm, specified explicitly aga@te sequence igopseq. t xt, may use any fixed-width
guantum gates, whose matrix elements are givgoper at ors. t xt . The initial input state (which must be a classical
state in the computational basis) is givemiinput . t xt .

The general approach of the simulator is to progr@ssafds through the quantum algorithm (circuit) one opmrat
(gate) at a time, while keeping track of the amplitude &f ansingle basis state, in the classical computatibasis,
which is selected pseudo-randomly at each step in acaerdaith the flow of probability mass in the quantum
algorithm, in such a way that the simulator’s prolighdf ending up at each final basis state preciselychest what
would be obtained from a complete calulation of the finahtum state vector.

This approach evokes an old interpretation of quantum mieshiay Bohnf*!, who showed that a quantum system can
be conceived of as having a unique classical state atissckvhich evolves (either deterministically or nondeieist-
ically) in accordance with the probability currentabhgh the system’s phase space that is induced by the Schrodinge
time-evolution. In this model, a complete wavefunctithh exists mathematically, but it is conceived of astjbeing a
“pilot” wave that guides the evolution of the physistdte, rather than being thought of as being the galwalcal state
itself. In accordance with the subordinate status ofvenefunction in Bohm'’s philosophy, rather than storirgyehtire
wavefunction, and conceiving of it as being the simulatatéswe only calculate values of the wavefunction attpoi

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 2 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

that are needed to compute the transition probabist@sg the specific possible trajectory through the waksonfig-
uration space that is presently being explored.

The core algorithms for updating the stochasically-evohasilststate (procedure “run()”) and calculating wavefoncti
amplitudes for specific basis states (function “calcAf)@re outlined below in Listing 1.

To see a detailed graphical illustration of the functignirfi this algorithm on a particularly simple example circuit,
please refer to our previous pafer

Listing 1. Outline of the core algorithm used in the @néversion of SEQCSIim. The selection of a particopearation
(gate and operand bits) on lines 5 and 18 determines fys®tsible “neighbor” or “predecessor” basis statebef t
current one, differing from the present state on the opeiigsd b

1 procedure SEQCSim::run

2 curSate = inputSate; /I Current basis state, in the computational basis

3 curAmp := 1; /I Amplitude of current basis state

4 forPC =: 0 to #gates, /I Index of current operation in the gate sequence
5 with respect to the operator g&€J and its operands,

6 for each neighbabr; of curState,

7 ihbr; = curSate, amp[nbr;] :=curAmp;

8 elsamp[nbr;] := calcAmp¢br));

9 amp[] := opMatrix * amp[]; /I Complex matrix product
10 probl[] := normSqramp[]); /I Calc probs as normalized squares of amplitudes.
11 i := pickFromDistprobl]); /I Pick a random successor of the current state.

12 curSate := nbr;; /Go to that neighbor.

13 curAmp := amp[nbr;]. /I Remember its amplitude, calculated earlier.

14

15 function SEQCSim::calcAmp(Statber): /I Recursive amplitude-calculation procedure
16 curState := nbr;

17 if PC=0, return ¢urSate = inputSate) ? 1 : 0;// At t=0, input state has all the amplitude.
18 else, with respect to the operator g2@={1] and its operands,

19 for each predecesgmed of curSate,

20 PC:=PC-1;

21 amp[pred] = calcAmppred); // Recursive calculation of pred. amp.
22 PC:=PC+ 1;

23 amp[] := opMatrix * amp[]; /I Complex matrix product

24 returnamp[cur Satey;

3. EXAMPLE QUANTUM CIRCUIT USED IN TESTING

For purposes of testing the correctness and performanmer aflgorithm, we focused on a simple family of inegla
binary adder circuits based on an algorithm by DfélpeFhese adders use a Quantum Fourier Transform (QFT)sand it
inverse to convert one of the addends into and out of a plpseEsentation, and uses phase gates between addends to
carry out the addition in the phase representationellyexvoiding the need to explicitly compute carries. Thddera

are not particularly efficient (since they require ondfegates for am-bit add) but they require no ancilla bits, and they
provide a good test case that includes both trivial andrimiahtgates, and that spreads out and later reconcentrate
amplitude in an interesting way. For our purposes,idgidlt gate means a gate, like the phase gate descritbed,be
whose unitary matrix is diagonalizable in the computatidszadis. With such gates, each basis state has only one
possible predecessor, so these gates do not have agrefigant impact on the time complexity of the simuati- in

our approach, any sequence of trivial gates is simulati@gtegr time.

An example of the adders used is shown in fig. 1 belos illustration was prepared using the freely-avail&AD
design/simulation tool, version 1.96, available framt p://apoll on.cc. u-tokyo. ac.j p/ ~wat anabe/ gqcad/
i ndex. ht ni . In this figure, H represents the Hadamard bate(s, + 0,)-2%?=[1, 1; 1, -1)/2"% or in displayed form,

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 3 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

111 1 1
'EL _J. M

A numberk in a box represents a controlled-phase gator a phase rotation d&f degrees. In terms of the rank-2

identity operatorl = [1, 0; 0, 1], number operatdd= [0, O; 0, 1], its complemerii = | — R, and tensor produdt,
and then also written out more explicitly as a displayediix, this operator can be defined as

¢, =N O 1 +A0 exp(iikr /180)

1
0
0

0

o~ O

0

0 0
0 0 2)
1 0 '

0 exp(rk/180)

The phase gate rotates the phase of a given basibpthte specified number of degrees if and only if botthefibput
bits are 1. Itis symmetrical with respect to tbeteol and target bits. It istavial gate — note its matrix is diagonal.

{180}

HEE
215
@
=]

¥
@©
L

v

H {90 &5 }Hny

el e

B

7

ElEE]

ne

[#15e 77
Clmmm] T
S itaanast

Fig. 1. lllustration, using the freely-available QCAD toaf a quantum circuit for adding two 4-bit binary numberb in
place using Draper’s algorithm. The top group of 4 qubitsesgmtsh, the bottom four qubits a® and the most-
significant qubit in each group is at the top. The initialesshown at the left =1, b=1. The first (leftmost) 10 gates
perform a quantum Fourier transform (QFT)aoin-place, to convert the value afinto a pattern of phases on the
amplitudes over tha subspace. The next 10 gates increment the phases by thefualughe final 10 gates perform
an inverse QFT to convert the phases back into a valae ®he overall operation performedds= a + b, and the
final value ofa (which is measured after the computation) is 2. Theevaib is unchanged.

The above example circuit can be easily prepared for infuthe SEQCsim simulator by describing it in a simpbd
input format in the four filesqconf i g, qi nput , goper at or s, gopseq}.t xt, as illustrated in listings 2-5 below.
The precise format of these files has some limitexilfility — keywords may be abbreviated, whitespace isrigghcand
lines beginning with “comment:” are ignored. The forrgpécifier on the first line allows for future extemsimf the
file format, while allowing new versions of the siratdr to remain backwards-compatible with older input files.

Listing 2. Contents of the ASCII text input figgonfi g. t xt , which is used to tell SEQCsim the size and regisfetseo
input circuit, for the circuit shown in fig. 1. (Line numbst®wn at the left are not included in the file.)

gconfig.txt format version 1
bits: 8

naned bitarray: a[4] @O0
naned bitarray: b[4] @4

AWNPEF

Listing 3. Contents of the ASCII text input figg nput . t xt used to tell SEQCsim the decimal values of the input
registers for the circuit shown in fig. 1. (Line numbdrsven at the left are not included in the file.)

1 gqinput.txt format version 1
2 a=1
3 b=1

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 4 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

M. P. Frahhl.

Listing 4. Contents of the ASCII text input fig@per at or s. t xt used to tell SEQCsim the definitions of the quantum
operators (gates) used in the circuit shown in fig.Line(numbers at the left are not included in the file.)

O©CoO~NOOUTAWNE

goperators.txt format v
operators: 8
operator #: 0
nane: H

size: 1 bits
matrix:
(0.7071067812 +
(0.7071067812 +
operator #: 1

i *0) (0.
i*0) (-0

nanme: cPi Over2

size: 2 bits

matrix:

(1 +i*0) (O +i*0) (O
(0O +i*0) (1 +i*0) (O
(0 +i*0) (0O +i*0) (1
(0 +i*0) (0 +i*0) (O

ersion 1

7071067812 + i *0)
. 7071067812 + i *0)

+1*0) (0 +i*0)
+1*0) (0 +i*0)
+1*0) (0 +i*0)
+1*0) (0 +i*1)

... (Six additional operators elidefbr brevity)...

Listing 5. Contents of the ASCII text input fig@pseq. t xt used to tell SEQCsim the sequence of quantum operations
(gate instances) used in the circuit shown in fig. 1. (bimabers shown at the left are not included in the file.)

gopseq. txt format version 1

operations: 30

operation #0: apply unary operator Hto bits a[3]

operation #1: apply binary operator cPiOver2 to bits a[3], a[2]
operation #2: apply binary operator cPiOver4 to bits a[3], a[l]
operation #3: apply binary operator cPiOver8 to bits a[3], a[0]
22 additional gate operations elided for brevity)...

operation #26: apply binary operator inv_cPiOver8 to bits a[3],
operation #27: apply binary operator inv_cPi Overd to bits a[3],
operation #28: apply binary operator inv_cPiOver2 to bits a[3],
operation #29: apply unary operator Hto bits a[3]

a[0]
a[1]
a[2]

Listing 6. Text output from SEQCSim when run with the aliexéfiles (listings 2-5) as input. (Line numbers shown at th
left are not included in the output.) Note that at thcksion of the computation, the value of registéeast

significant 4 bits) is 00L0= 2, verifying that the simulator has correctly deteedithat 1 + 1 = 2.

2
3
4
5
6

Wel come to SEQCSim the Space-Efficient Quantum Conputer SI Milator.

(C++ consol e version)

By M chael

Al'l rights reserved.

..(2 blank lines)..

The new current state is 7->00011010<-0 (8 bits)
68 SEQCSi m : Bohm step_forwards():
The new current state is 7->00010010<-0 (8 bits)
The PC value 30 is >= the nunber of operations 30.

69
70 SEQCSi m :done():
71 We are done!

P. Frank, Uwe Meyer - Baese,
Copyright (C) 2008-2009 Florida State University Board of Trustees.

Irinel Chiorescu,

9 SEQCSim:run(): Initial state is 7->00010001<-0 (8 bits) ==> (1 + i*0).
10 SEQCSi m : Bohm step_forwards(): (tPC=0)

11 The new current state is 7->00011001<-0 (8 bits) ==> (0.707107 + i*0).
12 SEQCSi m : Bohm step_forwards(): (tPC=1)

13 The new current state is 7->00011001<-0 (8 bits) ==> (0.707107 + i*0).

...(26 intermediate steps elided for brevity)...
66 SEQCSI m : Bohm step_forwards():
67

(t PC=28)

(t PC=29)

and Liviu Oniciuc.

==> (0.707107 + i*0).

==> (1 +i*0).

Original submitted manuscript, v.0.5.1

As submitted, preder/footer, 3/16/2009

Manuscript page 5 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

4. EMPIRICAL MEASUREMENTS OF SPACE/TIME COMPLEXITY

To show that the space and time complexity of SEQCSieeith respond in the expected manner to changes in the size
of the simulated circuit, we used the following proceduréne Second author wrote a tool in C# to automatically
generate the requiregtonfi g. t xt andqopseq. t xt input files for SEQCsim, as well as correspondiqgd circuit

files for QCAD, for Draper adders of any desired nunavet size of operands. Using this tool, we generated adfders
size 2x2 (2 addends, 2 bits each) up through size 2x14 (2 adddrts each), and ran QCAD and SEQCsim on each
one, on a typical Dell desktop running Windows Vista, whiasuring each application’s peak memory usage and CPU
time using the shareware Kiwi application monitor. Tésults were tabulated and used to generate the charts below

Fig. 2 shows that overall memory usage of QCAD (whichiynebly internally uses a traditional state-vectoreas
simulation technique) asymptotically increases exponentigitii the circuit size, whereas the memory usage of
SEQCsim remains essentially flat — the memory usedrially by our algorithm is only in the kilobytes, and iagtice

is always dominated by the space required for the sta@etdibraries which we invoke to provide functions sush a
text /0 and pseudo-random-number generation.

QCAD vs. SEQCsim memory usage

10,000,000
QCAD
@ 1,000,000 —o— SEQCsim
X
QO
(@]
@©
(%2}
>
> 100,000
o
£
Q
£
X
& 10,000
a i)
= ——0——0——0—0—0—0—0
1,000

4 6 8 10 12 14 16 18 20 22 24 26 28
QFT adder circuit width (qubits)

Fig. 2. Overall peak memory usage, in kilobytes, of QGA&rsus SEQCsim, for Draper adder circuits of width 4 (2x2)
through 28 (2x14), as measured using the Kiwi application nrorfieese figures include pages allocated for sharable
DLLs, but a comparison of private working set sizes, aasomed by the Windows Task Manager in Vista, gives
qualitatively similar results. QCAD'’s higher base megymesage is unsurprising, since it requires more libraoes
support its GUL. Note that the vertical scale is Idganic. Beyond about 18 bits, QCAD’s internal memory uszge
be seen to be increasing exponentially, as the size ofritanic data set exceeds the memory requirements of &s bas
AP libraries; this behavior would be expected for anyusator based on an explicit state-vector representatiate N
that, in comparison, SEQCSim’s memory usage remains esigefiat, at about 2 MB, throughout this range, and
most of this is attributable to the system & languagelibs used. Note there is no data point for QCADciiauit
width 28, because the required memory (about 4 GB) exceedrdvab available on the PC that was used for testing.

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 6 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

The next chart, shown in fig. 3, shows in more detail the memory usage of SEQCsim increases as a furaftibe
number of gates in the quantum circuit (for the sameaarfig). 2). There are some irregularities in th@lgravhich we
hypothesize result from the fact that the number of paflecated by the dynamic memory allocator may eightly
from run to run depending on unpredictable factors. dlesgularities could be minimized by averaging the results
over multiple runs, but we have not yet done this. pdeghe irregularities, there is a clear almost-lineend in the
memory usage which is well accounted for by the inangasumber of stack frames that must be allocated as the
number of levels of calcAmp() recursion (which is pmtjpnal to the depth of the circuit) increases. Tize sf these
stack frames is somewhat larger than needed, becauser@mnt @mplementation is somewhat inefficient in thatores

the values of a variety of temporary lexical variablesaeh level of the recursion. It would be possiblelitminate this
inefficiency through a more direct implementation tregilaced the recursion with a more specialized iterativéne

for traversing the tree of predecessors that reusedrifsotary variables. This routine would only need to keagktof

a single complex number (the accumulated amplitude) at eaattofehe treei.e. for each gate.

Linear growth of SEQCsim memory usage with size of

guantum circuit
1960

1956

1952 y=0.1656x + 1895.9
R®=0.9282

1948
1944
1940
1936
1932
1928
1924
1920
1916
1912
1908
1904
1900
1896
1892

Peak memory usage (KB)

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

Fig. 3. This graph shows how the peak memory usage o€SiEQaried with the size in gates of the QFT-basedradde
circuits that were used for testing. The vertical skate is linear, and we can see there is a slight, rouglebyr|
increase in memory usage from 1900 KB to 1956 KB, in pagetgiK increments, as we go from 9 operations for the
2x2 adder to 315 operations for the 2x14 adder. The resibs@ewhat noisy due to slight runtime variations in
pages allocated by the memory manager because thess weselinot averaged over multiple runs. The extra 56K
required for the largest circuit size is easily accedrior by the increased number of stack frames that must be
allocated in order to get through all 315 levels of reonri the calcAmp() function in the final step. If desiréws
size of these stack frames could be further reduced freroutfient maximum of ~187 bytes to only a single complex
number (say about 8 bytes), by replacing the recursive funetibra more specialized iterative tree traverser.

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 7 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

Finally, fig. 4 shows how the CPU time used by both QCa#&ial SEQCsim varies with the width of the simulated
circuit. At present, SEQCSIim is about a factor of@velr than QCAD for larger circuit sizes. This is unssipg,
given that presently SEQCSim is highly flexible (gabésany width can be defined) and uses a relatively etdbor
recursive procedure that invokes multiple levels of C+strabtion, as opposed to the more straightforward wtatier
updating that must be done in QCAD. There is much roorfuftirer improvement in SEQCSim’s performance.

It would be fairly straightforward to modify SEQCSimdarry out an ordinary state-vector representatiothefstate
until the limit of memory (or on-chip cache) is reachaull then revert to the recursive amplitude-calculagracedure
only for further state evolution beyond that point. Thaald allow us to take full advantage of the available mgrtoor
boost performance, while retaining the ability to handlauis of larger sizes without crashing.

Alternatively, we can keep SEQCsim’s memory usage miniwidle giving it a substantial constant-factor penfance
boost by reimplementing its kernel using a custom or semorcustardware architecture. That approach will be

discussed in the next section.

QCAD vs. SEQCsim CPU time usage

100,000.

10,000. QCAD

1.000 —— SEQCsim

100.

\

CPU time (secs.)
[N

o
[E

0.01

4 6 8 10 12 14 16 18 20 22 24 26 28
QFT adder circuit width (qubits)

Fig. 4. Comparison of CPU time used by QCAD vs. SEQUBI 2x2 through 2x14 bit adders. QCAD’s greater CPU
time usage for small circuit sizes can be accountebyftihe fact that it has a GUI which is used to load theiitiand
display results, whereas SEQCSim presently does notcaWeee that the CPU time for both algorithms
asymptotically increases exponentially, as expectetheasicuit width increases. Each increase in circuitiwigt 2
bits results in about a factor of 4 increase in timeperity, as expected. In the case of QCAD, this is lezthe
state vector is 4x larger; whereas for SEQCSimbeisause, for each additional bit in addenthere are 2 additional
non-trivial gates (Hadamard gates) in the circuit. fédormance of SEQCSim could be significantly improved
(beating that of QCAD) by either leveraging additional mgnfrecalculating fewer amplitudes), or by
reimplementation in special-purpose, single-chip hardwarapproach which is made feasible because of SEQCSim’s
low memory usage.

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 8 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

5. FPGA-BASED EMBEDDED ARCHITECTURE

Since the SEQCSim simulator needs little memory lastihtensive arithmetic requirements, an FPGA-based hsedw
accelerator is currently being designed to improve sitmulgerformance. Speed-up factors of 10-100x are typically
achieved with FPGA-based accelerdfbrdn this section we discuss some design approachesvesploring.

5.1 Hardware Resources and Design Tools in FPGA Environmés

FPGAs have a large field of arithmetic resources thathe tailored to the algorithms needed. The new generaitio
FPGAs like Xilinx Virtex have over 500 embedded 18x18-bit multipliewver a hundred 18 Kb memory blocks, and
over 100,000 logic blocks that can be used, for instance, as3200i@ adders. In contrast, today's cell-based ASIC
designs are relatively expensive (with mask charges of $4BDinm technology) and are often replaced by FPGA-
based solutions. The FPGA market share is growing tfasttwo leaders (Altera and Xilinx) report revenues of over
$1B annually. To make efficient use of the large arithmetsource available in FPGAs, two system level design
approaches are currently being considered.

The first is based on the use of Altera’s new C2H caeripilhich runs on any NIOS 2 based system. NIOS 2 is a
royalty-free 32-bit soft-core microprocessor that carcaefigured with 1-5 pipeline stages, with or without datd a
program caches, and many peripherals like UART or SDRitstfaces. The C2H compiler allows a quasi-automatic
conversion of ANSI-C code into FPGA hardware. Simplykitae function in your C code you would like to accelera
(fig. 5) and the C2H compiler translates the C codehatdware, including register, arithmetic, memory blckd the
required Avalon Bus interface. These new blocks are aduedtihe SOPC builder files that also allow running
testbenches in a gate level simulator. Additionab@irgy techniques and compiler directives can be used sofheare
coding of the application to force the use of on-chip drclofp memory, embedded multipliers or LUT-based
multipliers. The features of C2H can be summarized lasg®:

» Tight integration with software design flow

* Push-button acceleration of ANSI/ISO C code

» Direct connection of hardware accelerators to CPUmongmap

» Seamless support for pointers and arrays

» Efficient latency-aware scheduling and pipelining of rogniransactions

Since C2H provides automatic parallelization, the speedxtgsnore substantial than the previous often-used custom
instruction interface to NIOS, that can only use astegibank to exchange data between the host process@oan
processor. C2H user applications obfhiperformance improvements exemplified by a convolution derc(l3x), FFT
(15x%), and matrix rotation (73x). In contrast, a 256-poisNtFT custom user function has been reported with 45%-
77%.,i.e. less than a factor of 2 improvem@rft 632

A second approach that is becoming more popular is the wse application-specific microprocessor with a custom
instruction set that can be tailored to the problemhaid avoiding the HW/SW partitioning bottleneck. Mixed
architecture description languages (ADLs) like EXPRESSIOMDES, or LISA that combine both the structural and
behavioral details of the microprocessor architecame preferréd. The language for instruction set architecture
(LISA), for instance, allows us to specify a procesastruction or cycle accurately using a few LI®perations, then

to explore the architecture using a tool generatortfferassembler, linker, and C-compiler) and profifey. @), and
finally determining the speed/size/power parameters wianzatically synthesized HDL cddf&™! Processor models
like 32-bit 5 pipeline stage LT-RISC, 32-bit 3-pipeline stageDSP, or LT-VLIW 5-pipeline stage are provided and
can easily extended for the custom QC instructions.

5.2 Design concepts for an FPGA-based SEQCSim

In the present software-only implementation of SEQCHRi@++, the execution time of the compute-intensive &eim

the recursive calcAmp() pseudocode is dominated by operasiocis as basic bit manipulation (extraction and
modification of individual bits and small groups of hitspacked bit-vectors representing classical basis stétie
guantum computer), basic arithmetic (addition and multiplinatiofloating-point complex numbers representing state
amplitudes), and control-flow operations implementirgpky conditionals, and recursive procedure calls.

A custom multi-ported register structure for holding therenir basis state being explored would be useful for fast
extraction and modification of operand bits.

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 9 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation

M. P. Frahhl.

HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

- =10l x|
File Edit Refactor Mavigate Search Project Tools Run Window Help
- = - a | =
) eg - | & | E-a- - |- 0-- @5 2] - s s 55 | Mos 1 et
-N\os I CJC+H+ Proja., 63 = O|[[€ dma_ceh_tutorial.c 22 =0 EE Outline E2 =0
| 3 &£ T H?ncl\me <stdio.hr o BR s e
15 alera.components ﬂ?nclude D T stdio.h =
BES DM&_tutor H?ncl\me jsys/alticache.hi string.h
= Debug #include "sys/alt alarm.h systalt_cache.h
<[] dma_czh_tutorial.c . sysfalt_alarm.h
U odioh ﬂdef?ne TRANSFER_LENGTH 1048576 w # TRAMSFER_LENGTH
o Sing.h #define ITERATIONS 100 e —— |
[#define Switches [volatile char #) 0x010030zZ0 —
u syslalt_alarm.h) ! . ! () Make Targets £3 =0
usysfalt cache.h #define LEDs (char *) 0x01003030
ITERATIONS .) N . ti 8 b=
LEDs t M(int _ restrict_ dest_prr, int _ restrict_ source prr, int length 15 DMA_tutar
Switches . (=125 DMA_tutar_syslin
TRANSFER_LENGTH AnLRLe
® do_dma
. for{ i = 0; i < (length >> 2); i++]
| application,stf |
51 readme.txt Pruhlems‘CDHSDIE|PrUDErt\ES m 1| Refresh {5 =8
EH=5 DMA_tutor_syslib [nios_system]

1]

|+

= B DMA_tutor (Debug)
Use saftware mplementation For all accelerators
Use the existing accelerators
Analyze all acceleratars
Build software and generate SOPC Builder system
- @ Buid software, generate SOPC Builder system, and run Quartus II compilation
(= do_dmal)
@ Use hardware accelerator in place of software implementation. Flush data cache befare each call.
: O Use hardware accelerator in place of software implement ation
= Use software implementation
& Build repart cannat be displayed, Build the project.,

o

o
(o)
(o)
[]

Jne

Fig. 5. Software speed-up development with C2H. Useep instruction to be accelerated in a separate funclion.

accelerate this function, right click on it and select ‘#ecate with the Nios Il C2H Compiler”. Then run auto updat
of the whole system through compilatiom®,, build software, add new units in SOPC builder, and Quadumpilation
produces a configuration bit stream that is downloadecet&ERGA. Compile time approximately 1 hour.

=l=ix
u.[ﬁg.@»@mg[ﬁ a0 2| %] 5 T c\un-- Elce k]l e [m [=l
JJSymbm Set [Eimage Symbals =] Goto symbot [=] Gota Address [0x00000000 =l|[l32= =|[[2ppLicatio <]
E [Memories x|
{hananana e = [Source Fies]
Ty it Source Files
hemory Range: Ox00000000, 0x000000fF
: R[Z] has pointer te coefficients operands alelzl=f7 I, IR, GOEths EHEe: 16 %@ Search Director.
[00000002] LDL R[2], #(h0 & Oxff) Endianess, Native: little, Display: little EaCther Files
[00000003]: LDH R[2]. #(k0 >> &) i 3 5 o E 4 = 3 o = - EaAssembly Files
; R[3] is pointer to x data array e = \.EHeader Files
[00000004]: LDL R[3], #({ =0 & Oxff) 0000000000 00001[00002[00003[00004 00005| 00006 00010] 000zD LB/ Ces Files
[00000005] LDH R[3]. #(>0 >> 8) 0000000008 n0040] 00080] 00160| 00320[N0640[01280| 12560 05120]
{gggggggg} e 0000000016 G0000| D0G00| D0GG0| DDD0G| G00DE| GAA0D| H0GED| 60BEY
0000000024 | 00000[00000| 00000] 00006 00000| 00000 00000 D0000
S RI4]=RI4]+ sR[3]++ = sR[2]++ 0000000032 | 00000[00000| D0000| 00000[00000| BOB00| A0G00| B0A0D
{SSSSSSS?} Lr iy B{ﬁ}z R{g}' H% 0000000040 00000] 00000| 00000[00000| 00000 00000 00000| D0A00| Fiies ANSTTEEE
: MAC R[4]. R[3]. R \Files A Symbols /|
[aononona] whe RI4]. RIGI. RIZ) 0000000048 | 00000[00000| 00000| 00000[00000| B0000[A0000[B0A00 =
0000000056 00000[00000| 00000| 00006 00000| 00000 00000 D0000
; Test program ends here 0000000064 00000[00000| D0000| 00006[00000| N0000[00000 B0000
= {gggggggh} ggi 0000000072 | 00000[00000| 00000] 00006 00000| 00000 00000 D0000
OIDDDDDDDE]' o 0000000080 00000[00000| 00000] 00006 00000| 00000 00000 00000 ﬂ
10000000e] nop noooooooss| oooool ooooo| oooool noooo ooooo] oooool oonoof ooooo| &
2 <] | 3
dats men e 1l

BPC_valid

3 on Profile R[0]
Symbols Address Instruction Disasserbly e o P RI1]
[00000001] 00000 WOR " ‘an ki 5. B6% R[2]
[00000002] 01200 LDL R[2].#0 T‘decude 14 17.72% R[3]
[00000003] 02200 LDH R[2],#0 & [B_tvee o 0.00% Rl4] 170
[00000004] 01306 LIL R([3],#6 T‘u,cype o 0. 00% RIS5] 0
[00000ODS] 02300 LDH R[3],#0 T‘Mﬁty‘pe K] i1 53 R[E] [t}
[00000006] 00000 WOP T‘Iity-pe £ 5 06% RI7] 0
[00000007] 00000 nop T |F_type o 0.00% R[8] 0
[00000008] 1h324 mAC R([4],R[3].R[2] & |tirest_addrassing o 0. 00% RI9] 0
[00000008] 1h324 MAC R[4],R[3].R[2] [indirect_addressing o 0.00% RI10] 0
[0000000a] 1324 MAC R[4],R[3].R[2] T‘mdlrsc:z}ddreasmg 3 3 B0%E R[11] 0
[0000000b] 00000 NOP R[12] o
2> o [0000000c] 00000 nop e _"—l mI13] EI_I
ronnnnnna nnnny) RI141 n=
q _"—l Mo Pipe A AG in EX in FDin Hoaistors
hothing to oo =
= Nothing to do =
Nothing to do
000& + 0001 « 0000 = O000A
0014 + 0002 « D00A = 0032
002F + 0003 + 0032 = O0RA
Hothing to de
Hothing to do ~
stdout stderr
[Source: mactestasm 56 Step : 14| Simulation Mode : JIT-CCE | (o) Coware LISATek Version 2005.2.1 Linws -~ February, 2006

Fig. 6. Screenshot of LISA development tools: Disaséermmmemory monitor, pipeline profiles, files andister window.

Original submitted manuscript, v.0.5.1

As submitted, preder/footer, 3/16/2009

Manuscript page 10 of 12

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

A specialized multiply-accumulate unit for complex numbegised on a custom floating-point number representation
(which need not conform to the IEEE 754 standard) a@aifisiantly speed up calculation of complex amplitudes.

The recursive C++ routine implementing calcAmp() candveritten as a compact iterative kernel in plain Ciclvitan
then be automatically transformed into equivalent tata& state-machine hardware by a tool such as Altera’s C2H
compiler, thereby eliminating much of the control-flow head.

A custom stack memory structure can be designed to replacele of the C procedure-call stack. Insteadafrey a
full C++ stack frame, it can store just the minimaloimfiation needed by the kernel, mainly just a complex numbe
tracking the amplitude accumulated so far at a given levibledfree of possible trajectoriese(for a given gate).

Finally, the available RAM on the FPGA chip can bafgured as an associative cache memory to store hecent
calculated amplitudes with LRU replacement, which vighgicantly speed up the recursive amplitude calculatioit, as
will avoid redundant recalculation of amplitude valuesofar as possible, given the limit of available mgmor

Using techniques such as the above, we estimate thatwebtzin a speedup of at least about 50x in our FPGA-based
implementation of SEQCSim, as compared with our preSemtsoftware prototype running on standard PC hardware,
at which point SEQCSim will be significantly fasteanh existing simulators, as well as able to handigtarircuits.

6. CONCLUSION AND FUTURE WORK

We have developed and demonstrated a working softwaretypet of an extremely memory-efficient quantum
computer simulator, which will soon be released publichpigh the site http://www.eng.fsu.edu/~mpf/SEQCSim.htm.
Our prototype uses an amount of memory that increasgdiearly in the size of the quantum circuit beingnsiated,

at a proportion which was determined to be less tharhtwiored bytes of memory per gate in the present study.

A more carefully-optimized implementation should be ablddaven better then this, and achieve an asymptatic (
marginal, amortized) memory usage of only 1 bit per quhihésimulated circuit, plus 1 complex number per typical
nontrivial gate (such as a Hadamard gate or a generablbedtU, gate).

Due to its miniscule memory requirements, a simulatahisf class would be quite amenable for implementation in
custom or semi-custom special-purpose hardware arch#éeethich can be easily prototyped using FPGAs loaded with
embedded soft-core microprocessors such as Altera’s NiOSlinx’s MicroBlaze, and/or a semi-custom processor

designed with the help of tools such as Altera’s C2HherLiSA tool set. Such a hardware-augmented implementatio
is expected to be able to outperform traditional softveag-quantum computer simulators by a factor of 50-100x.

As for the software-only version of our simulatos, jirogramming interface is presently rather cumbersoeqgijring
the user to define his or her quantum gates and gate segueplicitly using an ad-hoc text input format. Howeiter,
would be straightforward to reimplement the simulasyrsay, a set of classes in C++, or other objéetvad language,
which would allow the programmer to describe quantum dlgos using the full expressive power of the host
language, while observing a statistical behavior ofQibit objects that matches what would be obtained frondeal
guantum computer, whose operation can be mimicked by a vefsiom simulator that is running “behind the scenes.”

This future version of our simulator would be a neardieal for allowing students and researchers to veniui@
guantum programming and freely experiment with new (andcpldhtum algorithms without having to either learn a
new programming language first, or worry about runningpbatemory.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support for this wornkfttee Council on Research and Creativity (CRC)latida
State University. Irinel Chiorescu would also likeltarik the National Science Foundation and the Defensanfév
Research Projects Agency for his support under grants D8AR408 and HR0011-07-1-0031 respectively. The
authors would also like to thank Altera Inc. and CoWareftrctheir support under the University programs. Any
opinions, findings, and conclusions or recommendationsesged in this paper are those of the authors, and do not
necessarily reflect the views of the sponsors.

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 11 of 12

(1l
(2]

(3]
(4]
(5]
(6]
(7]

8]
[0

[10]

[11]

A space-efficient quantum computer simulator suitable fgin-speed FPGA implementation M. P. Frankl.
HEADER/FOOTER ARE FOR WORKING DRAFT/PREPRINTS ONLYREMOVE BEFORE SUBMISSION

REFERENCES

Feynman, R. PThe Principle of Least Action in Quantum Mechanics, Ph.D. Thesis, Princeton University (1942).
Bernstein, E. and Vazirani, U. 1993. “Quantum complexity th&deroc. 28" Ann. ACM Symp. on Theory of
Computing, 11-20 (1993).

Frank, M.P., Meyer-Baese, U.H., Chiorescu, I., Oniciucand van Engelen, R.A., “Space-Efficient Simulatién o
Quantum Computers,” to appear in Proc" ATM Southeast Conference (2009).

Bohm, D. 1952, “A Suggested Interpretation of the Quantheoily in Terms of ‘Hidden’ Variables. (I & 11.),”
Phys.Rev. 85(2), 166-193 (1952).

Bohm, D., [The Undivided Universe], Routledge (1995).

Draper, T. G., “Addition on a Quantum Computer,” preprinkiaguant-ph/0008033v1 (2000).

Meyer-Baese, U., [Digital Signal Processing with Filcdgrammable Gate Arrays]™3ed., Springer-Verlag,
Berlin (2007).

Altera C2H compiler, http://www.altera.com/products/ipf@ssors/nios2/tools/c2h/ni2-c2h.html (2009).
Zurawski, R., ed., “A Novel Methodology for the DesiginApplication-Specific Instruction-Set Processors,” in
Embedded System Handbook, CRC Press, Boca Raton, FL (2006).

Hoffmann, A., Meyr, H., Leupers, R., “Architecture Explioa for Embedded Processors with LISA,” Kluwer
Academic Publishers, Boston (2002).

Hoffmann, A., Meyr, H., Leupers, R., “Optimized ASIP Syesdis from Architecture Description Language
Models,” Springer, Dordrecht, The Netherlands (2007).

Original submitted manuscript, v.0.5.1 As submitted, preder/footer, 3/16/2009 Manuscript page 12 of 12

