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14.19.4 Draft: Von Weizsäcker approximation . . . . . . . . . . . . . . . . . 129
14.19.5 Draft: Kinetic Energies . . . . . . . . . . . . . . . . . . . . . . . . . 129
14.19.6 Draft: Forbidden decays . . . . . . . . . . . . . . . . . . . . . . . . 130
14.19.7 Draft: Data and Fermi theory . . . . . . . . . . . . . . . . . . . . . 130
14.19.8 Draft: Parity violation . . . . . . . . . . . . . . . . . . . . . . . . . 130

14.20 Draft: Gamma Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.20.1 Draft: Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



14.20.2 Draft: Forbidden decays . . . . . . . . . . . . . . . . . . . . . . . . 131
14.20.3 Draft: Isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.20.4 Draft: Weisskopf estimates . . . . . . . . . . . . . . . . . . . . . . . 131
14.20.5 Draft: Comparison with data . . . . . . . . . . . . . . . . . . . . . . 131
14.20.6 Draft: Internal conversion . . . . . . . . . . . . . . . . . . . . . . . 131

A Addenda 132
A.1 Classical Lagrangian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.1.2 Generalized coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.1.3 Lagrangian equations of motion . . . . . . . . . . . . . . . . . . . . 132
A.1.4 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.1.5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 An example of variational calculus . . . . . . . . . . . . . . . . . . . . . . . 133
A.3 Galilean transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 More on index notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.5 The reduced mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.6 Constant spherical potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.6.1 The eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.6.2 The eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.6.3 About free space solutions . . . . . . . . . . . . . . . . . . . . . . . 134

A.7 Accuracy of the variational method . . . . . . . . . . . . . . . . . . . . . . 134
A.8 Positive ground state wave function . . . . . . . . . . . . . . . . . . . . . . 134
A.9 Wave function symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.10 Spin inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.11 Thermoelectric effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.11.1 Peltier and Seebeck coefficient ballparks . . . . . . . . . . . . . . . . 135
A.11.2 Figure of merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.11.3 Physical Seebeck mechanism . . . . . . . . . . . . . . . . . . . . . . 135
A.11.4 Full thermoelectric equations . . . . . . . . . . . . . . . . . . . . . . 135
A.11.5 Charge locations in thermoelectrics . . . . . . . . . . . . . . . . . . 135
A.11.6 Kelvin relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.12 Heisenberg picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.13 Integral Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.14 The Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.15 Quantum Field Theory in a Nanoshell . . . . . . . . . . . . . . . . . . . . . 136

A.15.1 Occupation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.15.2 Creation and annihilation operators . . . . . . . . . . . . . . . . . . 136
A.15.3 The caHermitians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.15.4 Recasting a Hamiltonian as a quantum field one . . . . . . . . . . . 136
A.15.5 The harmonic oscillator as a boson system . . . . . . . . . . . . . . 137
A.15.6 Canonical (second) quantization . . . . . . . . . . . . . . . . . . . . 137
A.15.7 Spin as a fermion system . . . . . . . . . . . . . . . . . . . . . . . . 137
A.15.8 More single particle states . . . . . . . . . . . . . . . . . . . . . . . 137
A.15.9 Field operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



A.15.10Nonrelativistic quantum field theory . . . . . . . . . . . . . . . . . . 137
A.16 The adiabatic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.17 The virial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.18 The energy-time uncertainty relationship . . . . . . . . . . . . . . . . . . . 138
A.19 Conservation Laws and Symmetries . . . . . . . . . . . . . . . . . . . . . . 138

A.19.1 An example symmetry transformation . . . . . . . . . . . . . . . . . 138
A.19.2 Physical description of a symmetry . . . . . . . . . . . . . . . . . . 138
A.19.3 Derivation of the conservation law . . . . . . . . . . . . . . . . . . . 138
A.19.4 Other symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.19.5 A gauge symmetry and conservation of charge . . . . . . . . . . . . 139
A.19.6 Reservations about time shift symmetry . . . . . . . . . . . . . . . . 139

A.20 Angular momentum of vector particles . . . . . . . . . . . . . . . . . . . . . 139
A.21 Photon type 2 wave function . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.21.1 The wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.21.2 Simplifying the wave function . . . . . . . . . . . . . . . . . . . . . 139
A.21.3 Photon spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.21.4 Energy eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.21.5 Normalization of the wave function . . . . . . . . . . . . . . . . . . 140
A.21.6 States of definite linear momentum . . . . . . . . . . . . . . . . . . 140
A.21.7 States of definite angular momentum . . . . . . . . . . . . . . . . . 140

A.22 Forces by particle exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.22.1 Classical selectostatics . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.22.2 Classical selectodynamics . . . . . . . . . . . . . . . . . . . . . . . . 140
A.22.3 Quantum selectostatics . . . . . . . . . . . . . . . . . . . . . . . . . 141
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Chapter 1

Special Relativity [Draft]

1.1 Overview of Relativity

1.1.1 A note on the history of the theory

1.1.2 The mass-energy relation

1.1.3 The universal speed of light

1.1.4 Disagreements about space and time

1



2 CHAPTER 1. SPECIAL RELATIVITY [DRAFT]

1.2 The Lorentz Transformation

1.2.1 The transformation formulae

1.2.2 Proper time and distance

1.2.3 Subluminal and superluminal effects

1.2.4 Four-vectors

1.2.5 Index notation

1.2.6 Group property
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1.3 Relativistic Mechanics

1.3.1 Intro to relativistic mechanics

1.3.2 Lagrangian mechanics



Chapter 2

Mathematical Prerequisites

2.1 Complex Numbers

2.1.1 Solution mathcplx-a

Question:

Multiply out (2 + 3i)2 and then find its real and imaginary part.

Answer:

Multiplying out the square gives 22 + 12i + (3i)2. Since i2 = −1, you get −5 + 12i. This
means that the real part is −5 and the imaginary part 12.

2.1.2 Solution mathcplx-b

Question:

Show more directly that 1/i = −i.

Answer:

4
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The probably most straightforward way is to take i to the other side, 1 = −i2, and then note
that i2 = −1.

2.1.3 Solution mathcplx-c

Question:

Multiply out (2 + 3i)(2− 3i) and then find its real and imaginary part.

Answer:

You get 22 − (3i)2, which is 4 + 9 = 13 so the real part is 13 and the imaginary part is zero.

2.1.4 Solution mathcplx-d

Question:

Find the magnitude or absolute value of 2 + 3i.

Answer:

The magnitude |2+3i| of 2+3i is the square root of 2+3i times its complex conjugate 2−3i:

|2 + 3i| =
√
(2 + 3i)(2− 3i) =

√
22 − (3i)2.

Since i2 = −1, |2 + 3i| =
√
13.

2.1.5 Solution mathcplx-e

Question:

Verify that (2− 3i)2 is still the complex conjugate of (2 + 3i)2 if both are multiplied out.

Answer:

(2− 3i)2 = −5− 12i and (2 + 3i)2 = −5 + 12i.
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2.1.6 Solution mathcplx-f

Question:

Verify that e−2i is still the complex conjugate of e2i after both are rewritten using the Euler
formula.

Answer:

e−2i = cos(2)− i sin(2) and e2i = cos(2) + i sin(2).

2.1.7 Solution mathcplx-g

Question:

Verify that
(
eiα + e−iα

)
/2 = cosα.

Answer:

Apply the Euler formula for both exponentials and note that sin(−α) = −sinα.

2.1.8 Solution mathcplx-h

Question:

Verify that
(
eiα − e−iα

)
/2i = sinα.

Answer:

Apply the Euler formula for both exponentials and note that sin(−α) = −sinα.

2.2 Functions as Vectors
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2.2.1 Solution funcvec-a

Question:

Graphically compare the spike diagram of the 10-dimensional vector ~v with components
(0.5,1,1.5,2,2.5,3,3.5,4,4.5,5) with the plot of the function f(x) = 0.5 x.

Answer:

vi

5

5 10 i

f

5

5 10 x
✟✟✟✟✟✟✟✟✟✟✟

✻✻✻✻✻✻✻✻✻✻

2.2.2 Solution funcvec-b

Question:

Graphically compare the spike diagram of the 10-dimensional unit vector ı̂3, with components
(0,0,1,0,0,0,0,0,0,0), with the plot of the function f(x) = 1. (No, they do not look alike.)

Answer:

vi

5

5 10 i

f

5

5 10 x
✻

The equivalent of a unit vector for functions is not the function 1, it is the Dirac delta
function. This function will be discussed in detail later, but simply put, it is a single,
infinitely high spike.

2.3 The Dot, oops, INNER Product
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2.3.1 Solution dot-a

Question:

Find the following inner product of the two vectors:
〈(

1 + i
2− i

) ∣∣∣∣
(

2i
3

)〉

Answer:

Take complex conjugates at the left and sum products of corresponding components as in

(1− i)× (2i) + (2 + i)× 3 = 2i + 2 + 6 + 3i = 8 + 5i

2.3.2 Solution dot-b

Question:

Find the length of the vector (
1 + i
3

)

Answer:

Take the square root of the inner product of the vector with itself:
√〈(

1 + i
3

) ∣∣∣∣
(

1 + i
3

)〉

which works out like
√
(1− i)(1 + i) + (3)(3) =

√
1− i2 + 9 =

√
11

2.3.3 Solution dot-c

Question:

Find the inner product of the functions sin(x) and cos(x) on the interval 0 6 x 6 1.

Answer:
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〈 sin(x)| cos(x)〉 =
∫ 1

0

sin(x) cos(x) dx = −1

4
cos(2x)

∣∣∣
1

0
=

1

4

(
1− cos(2)

)

2.3.4 Solution dot-d

Question:

Show that the functions sin(x) and cos(x) are orthogonal on the interval 0 6 x 6 2π.

Answer:

They are by definition orthogonal if the inner product is zero. Check that:

〈 sin(x)| cos(x)〉 =
∫ 2π

0

sin(x) cos(x) dx = −1

4
cos(2x)

∣∣∣
2π

0
=

1

4

(
1− cos(4π)

)
= 0

2.3.5 Solution dot-e

Question:

Verify that sin(x) is not a normalized function on the interval 0 6 x 6 2π, and normalize it
by dividing by its norm.

Answer:

|| sin(x)|| =
√
〈 sin(x)| sin(x)〉 =

√∫ 2π

0

sin2(x) dx =
√
π

Since || sin(x)|| is not one, sin(x) is not a normalized function on 0 6 x 6 2π. If you divide
by its norm, i.e. by

√
π, however,

|| sin(x)/
√
π|| =

√∫ 2π

0

(sin(x)/
√
π)(sin(x)/

√
π) dx =

√
π/π = 1

2.3.6 Solution dot-f

Question:
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Verify that the most general multiple of sin(x) that is normalized on the interval 0 6 x 6

2π is eiα sin(x)/
√
π where α is any arbitrary real number. So, using the Euler formula, the

following multiples of sin(x) are all normalized: sin(x)/
√
π, (for α = 0), − sin(x)/

√
π, (for

α = π), and i sin(x)/
√
π, (for α = π/2).

Answer:

A multiple of sin(x) means c sin(x), where c is some complex constant, so the magnitude is

||c sin(x)|| =
√
〈c sin(x)|c sin(x)〉 =

√∫ 2π

0

(c sin(x))∗(c sin(x)) dx

You can always write c as |c|eiα where α is some real angle, and then you get for the norm:

||c sin(x)|| =
√∫ 2π

0

(|c|e−iα sin(x)) (|c|eiα sin(x)) dx =

√∫ 2π

0

|c|2 sin2(x) dx = |c|
√
π

So for the multiple to be normalized, the magnitude of c must be |c| = 1/
√
π, but the angle

α can be arbitrary.

2.3.7 Solution dot-g

Question:

Show that the functions e4iπx and e6iπx are an orthonormal set on the interval 0 6 x 6 1.

Answer:

You need to show that both functions are normalized,
∣∣∣∣e4iπx

∣∣∣∣ = 1 and
∣∣∣∣e6iπx

∣∣∣∣ = 1, and
that they are mutually orthogonal,

〈
e4iπx|e6iπx

〉
= 0. Work each out in turn (don’t forget to

take complex conjugate of the first function in the inner products):

||e4iπx|| =
√
〈e4iπx|e4iπx〉 =

√∫ 1

0

e−4iπxe4iπx dx =

√∫ 1

0

1 dx = 1

||e6iπx|| =
√
〈e6iπx|e6iπx〉 =

√∫ 1

0

e−6iπxe6iπx dx =

√∫ 1

0

1 dx = 1

〈e4iπx|e6iπx〉 =
∫ 1

0

e−4iπxe6iπx dx =

∫ 1

0

e2iπx dx =
1

2iπ
e2iπx

∣∣∣
1

0
= 0

(Since the Euler formula shows that ei2π = 1.)
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2.4 Operators

2.4.1 Solution mathops-a

Question:

So what is the result if the operator d/dx is applied to the function sin(x)?

Answer:

Its derivative, the function cos(x), [1, p. 60].

2.4.2 Solution mathops-b

Question:

If, say, x̂2 sin(x) is simply the function x2 sin(x), then what is the difference between x̂2 and
x2?

Answer:

Nothing that affects the price of eggs. Just the way you think about them. You think of x̂2

as the operator that turns a function like sin(x) into the function x2 sin(x). But you think
of x2 as a recipe that turns a value like 3 into 32 = 9.

2.4.3 Solution mathops-c

Question:

A less self-evident operator than the above examples is a translation operator like Tπ/2

that translates the graph of a function towards the left by an amount π/2: Tπ/2f(x) =
f
(
x+ 1

2
π
)
. (Curiously enough, translation operators turn out to be responsible for the law

of conservation of momentum.) Show that Tπ/2 turns sin(x) into cos(x).

Answer:
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Using various standard trig manipulations, [1, pp. 43-44]:

Tπ/2 sin(x) = sin
(
x+ 1

2
π
)
= cos(−x) = cos(x).

Or just compare the graphs visually, [1, p. 43].

2.4.4 Solution mathops-d

Question:

The inversion, or parity, operator Π turns f(x) into f(−x). (It plays a part in the question
to what extent physics looks the same when seen in the mirror.) Show that Π leaves cos(x)
unchanged, but turns sin(x) into −sin(x).

Answer:

According to [1, p. 43], cos(−x) = cos(x), but sin(−x) = −sin(x). Compare also the graphs
of the functions on the same page; Π flips the graph of a function over around the y-axis.

2.5 Eigenvalue Problems

2.5.1 Solution eigvals-a

Question:

Show that eikx, above, is also an eigenfunction of d2/dx2, but with eigenvalue −k2. In fact,
it is easy to see that the square of any operator has the same eigenfunctions, but with the
square eigenvalues.

Answer:

Differentiate the exponential twice, [1, p. 60]:

d

dx
eikx = ikeikx

d

dx

(
d

dx
eikx

)
=

d

dx

(
ikeikx

)
= (ik)2eikx

So d2/dx2 turns eikx into (ik)2eikx; the eigenvalue is therefore (ik)2 which equals −k2.
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2.5.2 Solution eigvals-b

Question:

Show that any function of the form sin(kx) and any function of the form cos(kx), where k is
a constant called the wave number, is an eigenfunction of the operator d2/dx2, though they
are not eigenfunctions of d/dx.

Answer:

The first derivatives are, [1, p. 60]:

d

dx
sin(kx) = k cos(kx)

d

dx
cos(kx) = −k sin(kx)

so they are not eigenfunctions of d/dx. But a second differentiation gives:

d

dx

(
d

dx
sin(kx)

)
=

d

dx
(k cos(kx)) = −k2 sin(kx)

d

dx

(
d

dx
cos(kx)

)
=

d

dx
(−k sin(kx)) = −k2 cos(kx)

2.5.3 Solution eigvals-c

Question:

Show that sin(kx) and cos(kx), with k a constant, are eigenfunctions of the inversion operator
Π, which turns any function f(x) into f(−x), and find the eigenvalues.

Answer:

By definition of Π, and then using [1, p. 43]:

Π sin(kx) = sin(−kx) = − sin(kx) Π cos(kx) = cos(−kx) = cos(kx)

So by definition, both are eigenfunctions, and with eigenvalues −1 and 1, respectively.

2.6 Hermitian Operators
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2.6.1 Solution herm-a

Question:

A matrix A is defined to convert any vector ~r = xı̂ + ŷ into ~r2 = 2xı̂ + 4ŷ. Verify that ı̂
and ̂ are orthonormal eigenvectors of this matrix, with eigenvalues 2, respectively 4.

Answer:

Take x = 1, y = 0 to get that ~r = ı̂ transforms into ~r2 = 2ı̂. Therefore ı̂ is an eigenvector,
and the eigenvalue is 2. The same way, take x = 0, y = 1 to get that ̂ transforms into 4̂, so
̂ is an eigenvector with eigenvalue 4. The vectors ı̂ and ̂ are also orthogonal and of length
1, so they are orthonormal.

In linear algebra, you would write the relationship ~r2 = A~r out as:

(
x2
y2

)
=

(
2 0
0 4

)(
x
y

)
=

(
2x
4y

)

In short, vectors are represented by columns of numbers and matrices by square tables of
numbers.

2.6.2 Solution herm-b

Question:

A matrix A is defined to convert any vector ~r = (x, y) into the vector ~r2 = (x+y, x+y). Verify
that (cos 45◦, sin 45◦) and (cos 45◦,− sin 45◦) are orthonormal eigenvectors of this matrix,
with eigenvalues 2 respectively 0. Note: cos 45◦ = sin 45◦ = 1

2

√
2.

Answer:

For ~r = (cos 45◦, sin 45◦) = (1
2

√
2, 1

2

√
2), x = y = 1

2

√
2 so ~r2 = (

√
2,
√
2), and that is twice ~r.

For ~r = (cos 45◦,− sin 45◦) = (1
2

√
2,−1

2

√
2), x = −y = 1

2

√
2 so ~r2 = (0,0), and that is zero

times ~r.

The square length of ~r = (cos 45◦, sin 45◦) is ~r · ~r, which is given by the sum of the square
components: cos2 45◦ + sin2 45◦. That is one, so the vector is of length one. The same
for ~r = (cos 45◦,− sin 45◦). The dot product of (cos 45◦, sin 45◦) and (cos 45◦,− sin 45◦) is
cos2 45◦ − sin2 45◦. That is zero, because cos 45◦ = sin 45◦, so the two eigenvectors are
orthogonal.
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In linear algebra, you would write the relationship ~r2 = A~r out as:

(
x2
y2

)
=

(
1 1
1 1

)(
x
y

)
=

(
x+ y
x+ y

)

2.6.3 Solution herm-c

Question:

Show that the operator 2̂ is a Hermitian operator, but î is not.

Answer:

By definition, 2̂ corresponds to multiplying by 2, so 2̂g is simply the function 2g. Now write
the inner product 〈f |2g〉 and see whether it is the same as 〈2f |g〉 for any f and g:

〈f |2̂g〉 =
∫

all x

f ∗2g dx =

∫

all x

(2f)∗g dx = 〈2̂f |g〉

since the complex conjugate does not affect a real number like 2. So 2̂ is indeed Hermitian.

On the other hand,

〈f |̂ig〉 =
∫

all x

f ∗ig dx =

∫

all x

−(if)∗g dx = −〈̂if |g〉

so î is not Hermitian. An operator like î that flips over the sign of an inner product if it
is moved to the other side is called “skew-Hermitian”. An operator like 2̂ + î is neither
Hermitian nor skew-Hermitian.

2.6.4 Solution herm-d

Question:

Generalize the previous question, by showing that any complex constant c comes out of the
right hand side of an inner product unchanged, but out of the left hand side as its complex
conjugate;

〈f |cg〉 = c〈f |g〉 〈cf |g〉 = c∗〈f |g〉.
As a result, a number c is only a Hermitian operator if it is real: if c is complex, the two
expressions above are not the same.

Answer:
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Since constants can be taken out of an integral:

〈f |cg〉 =
∫

all x

f ∗cg dx = c

∫

all x

f ∗g dx = c〈f |g〉

〈cf |g〉 =
∫

all x

(cf)∗g dx = c∗
∫

all x

f ∗g dx = c∗〈f |g〉.

2.6.5 Solution herm-e

Question:

Show that an operator such as x̂2, corresponding to multiplying by a real function, is an
Hermitian operator.

Answer:

If the operator corresponds to multiplying by a real function of x, call it r(x), then

〈f |r̂g〉 =
∫

all i

f ∗rg dx =

∫

all i

(rf)∗g dx = 〈r̂f |g〉

since the complex conjugate does not affect a real function.

2.6.6 Solution herm-f

Question:

Show that the operator d/dx is not a Hermitian operator, but id/dx is, assuming that the
functions on which they act vanish at the ends of the interval a 6 x 6 b on which they are
defined. (Less restrictively, it is only required that the functions are “periodic”; they must
return to the same value at x = b that they had at x = a.)

Answer:

You first need to show that 〈
f
∣∣∣ d
dx
g
〉

is not the same as 〈 d

dx
f
∣∣∣g
〉

in order for d/dx not to be a Hermitian operator.
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By definition,
〈
f
∣∣∣ d
dx
g
〉
=

∫ b

a

f ∗
dg

dx
dx.

You can use “integration by parts,” [1, p. 64], to move the derivative from g to f :

〈
f
∣∣∣ d
dx
g
〉
= f ∗g

∣∣∣
b

a
−
∫ b

a

df ∗

dx
g dx = f ∗(b)g(b)− f ∗(a)g(a)−

∫ b

a

(
df

dx

)∗

g dx

(the differentiation can be moved inside the complex conjugate since it is a real operation.)
Since the functions f and g are the same at the end points a and b you have

〈
f
∣∣∣ d
dx
g
〉
= −

∫ b

a

(
df

dx

)∗

g dx = −
〈 d

dx
f
∣∣∣g
〉

This makes d/dx a skew-Hermitian operator, rather than a Hermitian one: flipping over the
operator to the other side changes the sign of the inner product.

To get rid of the change of sign, you can add a factor i to the operator, since the i adds a
compensating minus sign when you bring it inside the complex conjugate:

〈
f
∣∣∣i d
dx
g
〉
= −

∫ b

a

(
−i

df

dx

)∗

g dx =
〈
i
d

dx
f
∣∣∣g
〉

This makes id/dx a Hermitian operator.

2.6.7 Solution herm-g

Question:

Show that if A is a Hermitian operator, then so is A2. As a result, under the conditions
of the previous question, −d2/dx2 is a Hermitian operator too. (And so is just d2/dx2, of
course, but −d2/dx2 is the one with the positive eigenvalues, the squares of the eigenvalues
of id/dx.)

Answer:

To show that A2 is Hermitian, just move the two operators A to the other side of the inner
product one by one. As far as the eigenvalues are concerned, each application of A to one
of its eigenfunctions multiplies by the eigenvalue, so two applications of A multiplies by the
square eigenvalue.
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2.6.8 Solution herm-h

Question:

A complete set of orthonormal eigenfunctions of −d2/dx2 on the interval 0 6 x 6 π that are
zero at the end points is the infinite set of functions

sin(x)√
π/2

,
sin(2x)√
π/2

,
sin(3x)√
π/2

,
sin(4x)√
π/2

, . . .

Check that these functions are indeed zero at x = 0 and x = π, that they are indeed
orthonormal, and that they are eigenfunctions of −d2/dx2 with the positive real eigenvalues

1, 4, 9, 16, . . .

Completeness is a much more difficult thing to prove, but they are. The completeness proof
in the notes covers this case.

Answer:

Any eigenfunction of the above list can be written in the generic form sin(kx)/
√
π/2 where

k is a positive whole number, in other words where k is a “natural” number (one of 1, 2, 3,
4, . . . .) If you show that the stated properties are true for this generic form, it means that
they are true for every eigenfunction.

First check the end points. The graph of the sine function, [1, item 12.22], shows that a sine
is zero whenever its argument is a whole multiple of π. That makes both sin(k0) = sin(0)
and sin(kπ) zero. So sin(kx)/

√
π/2 must be zero at x = 0 and x = π too.

Now check that the norm of the eigenfunctions is one. First find the norm of sin(kx) by
itself:

|| sin(kx)|| =
√

〈sin(kx)| sin(kx)〉 =
√∫ π

0

sin(kx)∗ sin(kx) dx.

Since the sine is real, the complex conjugate does not do anything, and you get

|| sin(kx)|| =
√∫ π

0

sin2(kx) dx =
√
π/2

using [1, item 18.26]. Dividing this by
√
π/2, the norm

∣∣∣
∣∣∣sin(kx)/

√
π/2

∣∣∣
∣∣∣ becomes one; every

eigenfunction is normalized.

To verify that sin(kx)/
√
π/2 is orthogonal to every other eigenfunction, take the generic

other eigenfunction to be sin(lx)/
√
π/2 with l a natural number different from k. You must
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then show that the inner product of these two eigenfunctions is zero. Since the normalization
constants do not make any difference here, you can just show that 〈sin(kx)| sin(lx)〉 is zero.
You get

〈sin(kx)| sin(lx)〉 =
∫ π

0

sin(kx) sin(lx) dx = 0

using again [1, item 18.26].

Ahem. Completeness. Well, just don’t worry about it. There are a heck of a lot of functions
here. Infinitely many of them, to be precise. Surely, with infinitely many functions, you
should be able to approximate any given function to good accuracy?

(This statement is, of course, deliberately ludicrous. In fact, if you leave out a single eigen-
function, say the sin(x) function, the remaining infinitely many functions sin(2x), sin(3x),
. . . can simply not reproduce it by themselves. The best they can do is being zero and not try
to approximate sin(x) at all. Still, if you do include sin(x) in the sequence, any (reasonable)
function can be described accurately by a combination of the sines. It was hard to prove
initially; in fact, Fourier in his thesis did not. The first proof is due to Dirichlet.)

2.6.9 Solution herm-i

Question:

A complete set of orthonormal eigenfunctions of the operator id/dx that are periodic on the
interval 0 6 x 6 2π are the infinite set of functions

. . . ,
e−3ix

√
2π
,
e−2ix

√
2π
,
e−ix

√
2π
,

1√
2π
,
eix√
2π
,
e2ix√
2π
,
e3ix√
2π
, . . .

Check that these functions are indeed periodic, orthonormal, and that they are eigenfunctions
of id/dx with the real eigenvalues

. . . , 3, 2, 1, 0,−1,−2,−3, . . .

Completeness is a much more difficult thing to prove, but they are. The completeness proof
in the notes covers this case.

Answer:

Any eigenfunction of the above list can be written in the generic form ekix/
√
2π where k is

a whole number, in other words where k is an integer, one of . . . , −3, −2, −1, 0, 1, 2, 3, . . .
If you show that the stated properties are true for this generic form, it means that they are
true for every eigenfunction.
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Now periodicity requires that eki2π/
√
2π = e0/

√
2π, and the Euler formula verifies this: sines

and cosines are the same if the angle changes by a whole multiple of 2π. (For example, 2π,
4π, −2π, etcetera are physically all equivalent to a zero angle.)

The derivative of ekix/
√
2π with respect to x is kiekix/

√
2π, and multiplying by i you get

−kekix/
√
2π, so ekix/

√
2π is an eigenfunction of id/dx with eigenvalue −k.

To see that ekix/
√
2π is normalized, check that its norm is unity:

∣∣∣∣
∣∣∣∣
ekix√
2π

∣∣∣∣
∣∣∣∣ =

√∫ 2π

0

1√
2π
e−kix

1√
2π
ekix dx =

√∫ 2π

0

1

2π
dx = 1.

To verify that ekix/
√
2π is orthogonal to every other eigenfunction, take the generic other

eigenfunction to be elix/
√
2π with l an integer different from k. You must then show that

the inner product of these two eigenfunctions is zero. Since the normalization constants do
not make any difference here, you can just show that 〈ekix|elix〉 is zero. You get

〈
ekix

∣∣∣elix
〉
=

∫ 2π

0

e−kixelix dx =

∫ 2π

0

e(l−k)ix dx =
1

(l − k)i
e(l−k)ix

∣∣∣
2π

0
= 0

since e(l−k)i2π = e0 = 1. So different eigenfunctions are orthogonal, their inner product is
zero.

2.7 Additional Points

2.7.1 Dirac notation

2.7.2 Additional independent variables
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Basic Ideas of Quantum Mechanics

3.1 The Revised Picture of Nature

3.2 The Heisenberg Uncertainty Principle

3.3 The Operators of Quantum Mechanics

3.4 The Orthodox Statistical Interpretation
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3.4.1 Only eigenvalues

3.4.2 Statistical selection

3.5 A Particle Confined Inside a Pipe

3.5.1 The physical system

3.5.2 Mathematical notations

3.5.3 The Hamiltonian

3.5.4 The Hamiltonian eigenvalue problem
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3.5.5 All solutions of the eigenvalue problem

3.5.5.1 Solution piped-a

Question:

Write down eigenfunction number 6.

Answer:

Substituting n = 6 in the generic expression for the eigenfunctions,

ψn =

√
2

ℓx
sin

(
nπ

ℓx
x

)

you get

ψ6 =

√
2

ℓx
sin

(
6π

ℓx
x

)

3.5.5.2 Solution piped-b

Question:

Write down eigenvalue number 6.

Answer:

Substituting n = 6 in the generic expression for the eigenvalues,

En =
n2
~
2π2

2mℓ2x

you get

E6 =
36~2π2

2mℓ2x

3.5.6 Discussion of the energy values



24 CHAPTER 3. BASIC IDEAS OF QUANTUM MECHANICS

3.5.6.1 Solution pipee-a

Question:

Plug the mass of an electron, m = 9.109 38 10−31 kg, and the rough size of an hydrogen
atom, call it ℓx = 2 10−10 m, into the expression for the ground state kinetic energy and see
how big it is. Note that ~ = 1.054 57 10−34 J s. Express in units of eV, where one eV equals
1.602 18 10−19 J.

Answer:

E1 =
~
2π2

2mℓ2x
=

(1.054 57 10−34 J s)2π2

2 9.109 38 10−31 kg (2 10−10 m)2
= 1.506 10−18 J

or 9.4 eV. The true value is about 4.5 eV. That is in the ball park.

3.5.6.2 Solution pipee-b

Question:

Just for fun, plug macroscopic values, m = 1 kg and ℓx = 1 m, into the expression for the
ground state energy and see how big it is. Note that ~ = 1.054 57 10−34 J s.

Answer:

E1 =
~
2π2

2mℓ2x
=

(1.054 57 10−34 J s)2π2

2 1 kg 1 m2
= 5.488 10−68 J

or 3.4 10−49 eV. That energy is much less than you could ever hope to observe physically. A
single photon of light would dwarf it by 50 orders of magnitude.

3.5.6.3 Solution pipee-c

Question:

What is the eigenfunction number, or quantum number, n that produces a macroscopic
amount of energy, 1 J, for macroscopic values m = 1 kg and ℓx = 1 m? With that many
energy levels involved, would you see the difference between successive ones?

Answer:
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Putting the generic expression for the eigenvalues,

En =
n2
~
2π2

2mℓ2x

equal to 1 J and plugging in the given numbers:

n2(1.054 57 10−34 J s)2π2

2 1 kg 1 m2 = 1J.

Solving for n, you get n = 4.268 64 1033. Obviously, there is no way to distinguish that many
energy levels. A calculator cannot even display all 34 digits of this number, even if you knew
~ to enough digits accuracy to compute 34 digits.

3.5.7 Discussion of the eigenfunctions

3.5.7.1 Solution pipef-a

Question:

So how does, say, the one-dimensional eigenstate ψ6 look?

Answer:

As the graph below shows, it has six blobs where the particle is likely to be found, separated
by bands where there is vanishing likelihood of finding the particle.

x
ψ6

x
|ψ6|2

light

dark

light

dark

light

dark

light

dark

light

dark

light

dark

light

Figure 3.1: One-dimensional eigenstate ψ6.

extrascale=3,notransparent
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3.5.7.2 Solution pipef-b

Question:

Generalizing the results above, for eigenfunction ψn, any n, how many distinct regions are
there where the particle may be found?

Answer:

There are n of them.

3.5.7.3 Solution pipef-c

Question:

If you are up to a trick question, consider the following. There are no forces inside the pipe,
so the particle has to keep moving until it hits an end of the pipe, then reflect backward
until it hits the other side and so on. So, it has to cross the center of the pipe regularly. But
in the energy eigenstate ψ2, the particle has zero chance of ever being found at the center of
the pipe. What gives?

Answer:

Almost every word in the above story is a gross misstatement of what nature really is like
when examined on quantum scales. A particle does not have a position, so phrases like “hits
an end”, “reflect backward”, and “keep moving” are truly meaningless. On macroscopic
scales a particle may have an relatively precisely defined position, but that is only because
there is uncertainty in energy. If you could bring a macroscopic particle truly into a single
energy eigenstate, it too would have no position. And the smallest thing you might do to
figure out where it is would kick it out of that single energy state.

3.5.8 Three-dimensional solution

3.5.8.1 Solution pipeg-a

Question:
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If the cross section dimensions ℓy and ℓz are one tenth the size of the pipe length, how much
bigger are the energies Ey1 and Ez1 compared to Ex1? So, by what percentage is the one-di-
mensional ground state energy Ex1 as an approximation to the three-dimensional one, E111,
then in error?

Answer:

The energies are

Ex1 =
~
2π2

2mℓ2x
Ey1 =

~
2π2

2mℓ2y
Ez1 =

~
2π2

2mℓ2z
.

If ℓy and ℓz are ten times smaller than ℓx then Ey1 and Ez1 are each 100 times larger than
Ex1. So the one-dimensional ground state energy Ex1 is smaller than the true ground state
energy E111 = Ex1 + Ey1 + Ez1 by a factor 201. Which means it is off by 20 000%.

3.5.8.2 Solution pipeg-b

Question:

At what ratio of ℓy/ℓx does the energy E121 become higher than the energy E311?

Answer:

Using the given expression for Enxnynz
,

Enxnynz
=
n2
x~

2π2

2mℓ2x
+
n2
y~

2π2

2mℓ2y
+
n2
z~

2π2

2mℓ2z
,

E121 = E311 when

~
2π2

2mℓ2x
+

4~2π2

2mℓ2y
+

~
2π2

2mℓ2z
=

9~2π2

2mℓ2x
+

~
2π2

2mℓ2y
+

~
2π2

2mℓ2z

Canceling the terms that both sides have in common:

3~2π2

2mℓ2y
=

8~2π2

2mℓ2x

and canceling the common factors and rearranging:

ℓ2y
ℓ2x

=
3

8
.

So when ℓy/ℓx =
√

3/8 = 0.61 or more, the third lowest energy state is given by E121 rather
than E311. Obviously, it will look more like a box than a pipe then, with the y-dimension
61% of the x-dimension.
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3.5.8.3 Solution pipeg-c

Question:

Shade the regions where the particle is likely to be found in the ψ322 energy eigenstate.

Answer:

The wave function is

ψ322 =

√
8

ℓxℓyℓz
sin

(
3π

ℓx
x

)
sin

(
2π

ℓy
y

)
sin

(
2π

ℓz
z

)

Now the trick is to realize that the wave function is zero when any of the three sines is zero.
Looking along the z-direction, you will see an array of 3 times 2 blobs, or 6 blobs:

x

ψx3

x

|ψx3|2
lightlightlightlight

ψy2 |ψy2|2
y light

light
light

Figure 3.2: Eigenstate ψ322.

The white horizontal centerline line along the pipe corresponds to sin(2πy/ℓy) being zero at
y = 1

2
ℓy, and the two white vertical white lines correspond to sin(3πx/ℓx) being zero at x =

1
3
ℓx and x = 2

3
ℓx. The sin(2πz/ℓz) factor in the wave function will split it further into six

blobs front and 6 blobs rear, but that is not visible when looking along the z-direction; the
front blobs cover the rear ones. Seen from the top, you would again see an array of 3 times
2 blobs, the top blobs hiding the bottom ones.

3.5.9 Quantum confinement

extrascale=3,notransparent


Chapter 4

Single-Particle Systems

4.1 The Harmonic Oscillator

4.1.1 The Hamiltonian

4.1.2 Solution using separation of variables

4.1.2.1 Solution harmb-a

Question:

Write out the ground state energy.

Answer:

29
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h0(x) =
1

(πℓ2)1/4
e−ξ2/2

h1(x) =
2ξ

(4πℓ2)1/4
e−ξ2/2

h2(x) =
2ξ2 − 1

(4πℓ2)1/4
e−ξ2/2

h3(x) =
2ξ3 − 3ξ

(9πℓ2)1/4
e−ξ2/2

h4(x) =
4ξ4 − 12ξ2 + 3

(576πℓ2)1/4
e−ξ2/2

ω =

√
c

m

ℓ =

√
~

mω

ξ =
x

ℓ

Table 4.1: First few one-dimensional eigenfunctions of the harmonic oscillator.

Taking the generic expression

Enxnynz
=

2nx + 2ny + 2nz + 3

2
~ω

and substituting the lowest possible value, 0, for each of nx, ny, and nz, you get the ground
state energy

E000 =
3

2
~ω

4.1.2.2 Solution harmb-b

Question:

Write out the ground state wave function fully.

Answer:

Taking the generic expression

ψnxnynz
= hnx

(x)hny
(y)hnz

(z)

and substituting nx = ny = nz = 0, you get the ground state eigenfunction

ψ000 = h0(x)h0(y)h0(z).
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Now substitute for h0 from table 4.1:

ψ000 =
1

(πℓ2)3/4
e−x2/2ℓ2e−y2/2ℓ2e−z2/2ℓ2

where the constant ℓ is as given in table 4.1. You can multiply out the exponentials:

ψ000 =
1

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

4.1.2.3 Solution harmb-c

Question:

Write out the energy E100.

Answer:

Taking the generic expression

Enxnynz
=

2nx + 2ny + 2nz + 3

2
~ω

and substituting nx = 1, ny = nz = 0, you get

E100 =
5

2
~ω

4.1.2.4 Solution harmb-d

Question:

Write out the eigenstate ψ100 fully.

Answer:

Taking the generic expression

ψnxnynz
= hnx

(x)hny
(y)hnz

(z)

and substituting nx = 1, ny = nz = 0, you get

ψ100 = h1(x)h0(y)h0(z).
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Now substitute for h0 and h1 from table 4.1:

ψ100 =

√
2x/ℓ

(πℓ2)3/4
e−x2/2ℓ2e−y2/2ℓ2e−z2/2ℓ2

where the constant ℓ is as given in table 4.1. You can multiply out the exponentials:

ψ100 =

√
2x/ℓ

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

4.1.3 Discussion of the eigenvalues

0

3
2
~ω

5
2
~ω

7
2
~ω

9
2
~ω

nx = 0
ny = 0
nz = 0

nx = 1 0 0
ny = 0 1 0
nz = 0 0 1

nx = 2 0 0 1 1 0
ny = 0 2 0 1 0 1
nz = 0 0 2 0 1 1

nx = 3 0 0 2 0 1 0 2 1 1
ny = 0 3 0 1 2 0 1 0 2 1
nz = 0 0 3 0 1 2 2 1 0 1

Figure 4.1: The energy spectrum of the harmonic oscillator.

4.1.3.1 Solution harmc-a

Question:

Verify that the sets of quantum numbers shown in the spectrum figure 4.1 do indeed produce
the indicated energy levels.

Answer:

The generic expression for the energy is

Enxnynz
=

2nx + 2ny + 2nz + 3

2
~ω
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or defining N = nx + ny + nz,

Enxnynz
=

2N + 3

2
~ω

Now for the bottom level, nx = ny = nz = 0, so N = nx+ny +nz = 0, this state has energy
3
2
~ω.

Similarly, in each of the three sets of the second energy level in figure 4.1, the three quantum
numbers nx, ny, and nz add up to N = 1, giving this state energy 5

2
~ω.

For the third energy level, the three quantum numbers of each set add up to N = 2, giving
energy 7

2
~ω, and for the fourth set, the quantum numbers in each of the ten sets add up to

N = 3 for an energy 9
2
~ω.

4.1.3.2 Solution harmc-b

Question:

Verify that there are no sets of quantum numbers missing in the spectrum figure 4.1; the
listed ones are the only ones that produce those energy levels.

Answer:

The generic expression for the energy is

Enxnynz
=

2nx + 2ny + 2nz + 3

2
~ω

or defining N = nx + ny + nz,

Enxnynz
=

2N + 3

2
~ω

Now for the bottom level, N = 0, and since the three quantum numbers nx, ny, and nz

cannot be negative, the only way that N = nx + ny + nz can be zero is if all three numbers
are zero. If any one of nx, ny, or nz would be positive, then so would be N . So there is only
one state nx = ny = nz = 0.

For the second energy level, N = 1. To get a nonzero sum N , you must have one of nx, ny,
and nz to be nonzero, but not more than 1, or N would be more than 1 too. Also, if one of
nx, ny, and nz is 1, then the other two must be 0 or their sum N would still be greater than
1. That means that precisely one of nx, ny, and nz must be 1 and the other two 0. There
are three possibilities for the one that is 1, nx, ny, or nz, resulting in the three different sets
of quantum numbers shown in the spectrum figure 4.1.
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For the third energy level, N = 2, the maximum value value any one of nx, ny, and nz could
possibly have is 2, but then the other two must be zero. That leads to the first three sets
of quantum numbers shown in the spectrum. If the maximum value among nx, ny, and nz

is not 2 but 1, then a second one must also be 1, or they would not add up to 2. So in this
case you have two of them 1 and the third 0. There are three possibilities for the one that
is 0, producing the last three sets of quantum numbers shown in the spectrum 4.1 at this
energy level.

For the fourth energy level, N = 3, the maximum value value that any one of nx, ny, and
nz could have is 3, with the other two 0, producing the first three sets of quantum numbers.
If the maximum value is 2, then the other two quantum numbers must add up to 1, which
means one of them is 1 and the other 0. There are three possibilities for which quantum
number is 2, and for each of these there are two possibilities for which of the other two is 1.
That produces the next six sets of quantum numbers. Finally, if the maximum value is 1,
then both other numbers will have to be 1 too to add up to N = 3. That gives the tenth
set.

A less intuitive, but more general, procedure is to simply derive the number of different
eigenstates S for a given N mathematically and show that it agrees with the figure: The
possible values that the quantum number nx can have in order for nx+ny+nz not to exceed
N are in the range from 0 to N , and for each such value of nx, ny must be in the range from
0 to N −nx for nx +ny +nz no to exceed N . For each such acceptable pair of values nx and
ny, there is exactly one allowed value nz = N − nx − ny. So there is exactly one state for
each acceptable pair of values nx and ny. Which means that the number of states is, using
summation symbols,

S =
N∑

nx=0




N−nx∑

ny=0

1




The sum within the parentheses is (N − nx + 1) × 1, and then the remaining sum is an
arithmetic series [1, 21.1], producing

S = (N + 1)(N + 2)/2.

Substituting in N = 0, you get S = 1, a single state, for N = 1, S = 3, three states, for N
= 2 six states and for N = 3 ten states. So the spectrum 4.1 shows all states.

4.1.4 Discussion of the eigenfunctions
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4.1.4.1 Solution harmd-a

Question:

Write out the ground state wave function and show that it is indeed spherically symmetric.

Answer:

Repeating an earlier exercise, taking the generic expression

ψnxnynz
= hnx

(x)hny
(y)hnz

(z)

and substituting nx = ny = nz = 0, you get the ground state eigenfunction

ψ000 = h0(x)h0(y)h0(z).

Now substitute for h0 from table 4.1:

ψ000 =
1

(πℓ2)3/4
e−x2/2ℓ2e−y2/2ℓ2e−z2/2ℓ2

where the constant ℓ is as given in table 4.1. You can multiply out the exponentials:

ψ000 =
1

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

According to the Pythagorean theorem,
√
x2 + y2 + z2 is the distance from the origin r, so

ψ000 =
1

(πℓ2)3/4
e−r2/2ℓ2 .

It follows that the wave function only depends on the distance r from the origin, not on the
angular orientation compared to it. That is the definition of spherically symmetric: it looks
the same from any angle.

4.1.4.2 Solution harmd-b

Question:

Show that the ground state wave function is maximal at the origin and, like all the other
energy eigenfunctions, becomes zero at large distances from the origin.

Answer:
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According to the answer to the previous question, the ground state is

ψ000 =
1

(πℓ2)3/4
e−r2/2ℓ2 .

where r is the distance from the origin. Now according to the qualitative properties of
exponentials, an exponential is one when its argument is zero, and becomes less than one
when its argument becomes negative. So the maximum is at the origin r = 0.

The other eigenfunctions do not necessarily have their maximum magnitude at the origin:
for example, the shown states ψ100 and ψ010 are zero at the origin.

For large negative values of its argument, an exponential becomes very small very quickly.
So if the distance from the origin is large compared to ℓ, the wave function will be negligible,
and it will be zero in the limit of infinite distance.

For example, if the distance from the origin is just 10 times ℓ, the exponential above is
already as small as 0.000 000 000 002 which is clearly negligible.

As far as the value of the other eigenfunctions at large distance from the origin is concerned,
note from table 4.1 that all eigenfunctions take the generic form

ψnxnynz
=

polynomial in x

ex2/2ℓ2

polynomial in y

ey2/2ℓ2
polynomial in z

ez2/2ℓ2
.

For the distance from the origin to become large, at least one of x, y, or z must become
large, and then the blow up of the corresponding exponential in the bottom makes the
eigenfunctions become zero. (Whatever the polynomials in the top do is irrelevant, since an
exponential includes, according to its Taylor series, always powers higher than can be found
in any given polynomial, hence is much larger than any given polynomial at large values of
its argument.)

It may be noted that the eigenfunctions do extend farther from the nominal position when
the energy increases. The polynomials get nastier when the energy increases, but far enough
away they must eventually always lose from the exponentials.

4.1.4.3 Solution harmd-c

Question:

Write down the explicit expression for the eigenstate ψ213 using table 4.1, then verify that
it looks like figure 4.2 when looking along the z-axis, with the x-axis horizontal and the y-
axis vertical.

Answer:
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The generic expression for the eigenfunctions is

ψnxnynz
= hnx

(x)hny
(y)hnz

(z)

and substituting nx = 2, ny = 1 and nz = 3, you get

ψ213 = h2(x)h1(y)h3(z).

Now substitute for those functions from table 4.1:

ψ213 =
[2(x/ℓ)2 − 1][2y/ℓ][2(z/ℓ)3 − 3(z/ℓ)]

2
√
3 (πℓ2)3/4

e−x2/2ℓ2e−y2/2ℓ2e−z2/2ℓ2

where the constant ℓ is as given in table 4.1.

The first polynomial within square brackets in the expression above is zero at x = ℓ/
√
2 and

x = −ℓ/
√
2, producing the two vertical white lines along which there is zero probability of

finding the particle. Similarly, the second polynomial within square brackets is zero at y
= 0, producing the horizontal white line. Hence looking along the z-direction, you see the
distribution:

✲
x

✻y

ℓ/
√
2−ℓ/

√
2

Figure 4.2: Energy eigenfunction ψ213.

Seen from above, you would see four rows of three patches, as the third polynomial between
brackets produces zero probability of finding the particle at z = −

√
3/2ℓ, z = 0, and z =√

3/2ℓ, splitting the distribution into four in the z-direction.

This example illustrates that there is one more set of patches in a given direction each time
the corresponding quantum number increases by one unit.

extrascale=3,notransparent
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4.1.5 Degeneracy

4.1.5.1 Solution harme-a

Question:

Just to check that this book is not lying, (you cannot be too careful), write down the
analytical expression for ψ100 and ψ010 using table 4.1. Next write down (ψ100 + ψ010)/

√
2 and

(ψ010 − ψ100)/
√
2. Verify that the latter two are the functions ψ100 and ψ010 in a coordinate

system (x̄, ȳ, z) that is rotated 45 degrees counter-clockwise around the z-axis compared to
the original (x, y, z) coordinate system.

Answer:

Take the rotated coordinates to be x̄ and ȳ as shown:

✲

✻

x

y

�
�
�
�
�

�
�
�

�
�
�
�

�
��✒

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅■ x̄ȳ

A vector displacement of magnitude x in the x-direction has a component along the x̄-axis
of magnitude x cos 45◦, equivalent to x/

√
2. Similarly, a vector displacement of magnitude

y in the y-direction has a component along the x̄-axis of magnitude y cos 45◦, equivalent to
y/

√
2. So in general, for any point (x, y),

x̄ =
x+ y√

2
.

Similarly you get

ȳ =
y − x√

2
.
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Turning now to the eigenfunctions, taking the generic expression

ψnxnynz
= hnx

(x)hny
(y)hnz

(z)

and substituting nx = 1, ny = nz = 0, you get

ψ100 = h1(x)h0(y)h0(z).

Now substitute for h0 and h1 from table 4.1:

ψ100 =

√
2x/ℓ

(πℓ2)3/4
e−x2/2ℓ2e−y2/2ℓ2e−z2/2ℓ2

where the constant ℓ is as given in table 4.1. You can multiply out the exponentials:

ψ100 =

√
2x/ℓ

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

The same way, you get

ψ010 =

√
2y/ℓ

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

So, the combination (ψ100 + ψ010)/
√
2 is

ψ100 + ψ010√
2

=
(x+ y)/ℓ

(πℓ2)3/4
e−(x2+y2+z2)/2ℓ2 .

Now x2 + y2 + z2 is according to the Pythagorean theorem the square distance from the
origin, which is the same as x̄2 + ȳ2 + z2. And since x̄ = (x + y)/

√
2, the sum x + y in the

combination eigenfunction above is
√
2x̄. So the combination eigenfunction is

ψ100 + ψ010√
2

=

√
2x̄/ℓ

(πℓ2)3/4
e−(x̄2+ȳ2+z2)/2ℓ2 .

which is exactly the same as ψ100 above, except in terms of x̄ and ȳ. So it is ψ100 in the
rotated frame.

The other combination goes the same way.

4.1.6 Noneigenstates
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4.2 Angular Momentum

4.2.1 Definition of angular momentum

4.2.2 Angular momentum in an arbitrary direction

4.2.2.1 Solution angub-a

Question:

If the angular momentum in a given direction is a multiple of ~ = 1.054 57 10−34 J s, then
~ should have units of angular momentum. Verify that.

Answer:

Angular momentum is linear momentum, (mass times velocity,) times normal distance from
the axis. So its units are kg (m/s) m. Conversely J s is N m s and N, a Newton, is kg m/s2,
so J s is kg m2/s, the same as the units of ~.

4.2.2.2 Solution angub-b

Question:

What is the magnetic quantum number of a macroscopic, 1 kg, particle that is encircling the
z-axis at a distance of 1 m at a speed of 1 m/s? Write out as an integer, and show digits
you are not sure about as a question mark.

Answer:

Showing all digits as a question mark is not acceptable, of course.
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The classical angular momentum is 1 m distance times 1 kg times 1 m/s, or 1 J s. Since
that should be m~ with m the magnetic quantum number, you get

m =
1 J s

1.054 57 10−34 J s
= 9 482 3?? ??? ??? ??? ??? ??? ??? ??? ??? ???

4.2.2.3 Solution angub-c

Question:

Actually, based on the derived eigenfunction, C(r, θ)eimφ, would any macroscopic particle
ever be at a single magnetic quantum number in the first place? In particular, what can you
say about where the particle can be found in an eigenstate?

Answer:

The square magnitude of the wave function gives the probability of finding the particle. The
square magnitude, ∣∣C(r, θ)eimφ

∣∣2 = |C(r, θ)|2,
is independent of φ. So to be in a state of definite angular momentum, the particle must
be at all sides of the axis with equal probability. A macroscopic particle will at any given
time be at a single angle compared to the axis, not at all angles at once. So, a macroscopic
particle will have indeterminacy in angular momentum, just like it has indeterminacy in
position, linear momentum, energy, etcetera.

Since the probability distribution of an eigenstate is independent of φ, it is called “axisym-
metric around the z-axis”. Note that the wave function itself is only axisymmetric if m
= 0, in other words, if the angular momentum in the z-direction is zero. Eigenstates with
different angular momentum look the same if you just look at the probability distribution.

4.2.3 Square angular momentum

4.2.3.1 Solution anguc-a

Question:

The general wave function of a state with azimuthal quantum number l and magnetic quan-
tum number m is Ψ = R(r)Y m

l (θ, φ), where R(r) is some further arbitrary function of r.
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Show that the condition for this wave function to be normalized, so that the total probability
of finding the particle integrated over all possible positions is one, is that

∫
∞

r=0

R(r)∗R(r)r2 dr = 1.

Answer:

You need to have 〈Ψ|Ψ〉 =
∫
Ψ∗Ψd3~r = 1 for the wave function to be normalized. Now the

volume element d3~r is in spherical coordinates given by r2 sin θ drdθdφ, so you must have

∫
∞

r=0

∫ π

θ=0

∫ 2π

φ=0

R(r)∗Y m
l (θ, φ)∗R(r)Y m

l (θ, φ)r2 sin θ drdθdφ = 1.

Taking this apart into two separate integrals:

∫
∞

r=0

R(r)∗R(r)r2 dr

∫ π

θ=0

∫ 2π

φ=0

Y m
l (θ, φ)∗Y m

l (θ, φ) sin θ dθdφ = 1.

The second integral is one on account of the normalization of the spherical harmonics, so
you must have ∫

∞

r=0

R(r)∗R(r)r2 dr = 1.

4.2.3.2 Solution anguc-b

Question:

Can you invert the statement about zero angular momentum and say: if a particle can be
found at all angular positions compared to the origin with equal probability, it will have zero
angular momentum?

Answer:

No. To be at zero angular momentum, not just the probability |Ψ|2, but Ψ itself must
be independent of the spherical coordinate angles θ and φ. As an arbitrary example, Ψ =
R(r)eiφ sin θ would have a probability of finding the particle independent of θ and φ, but not
zero angular momentum.

4.2.3.3 Solution anguc-c

Question:
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What is the minimum amount that the total square angular momentum is larger than just
the square angular momentum in the z-direction for a given value of l?

Answer:

The total square angular momentum is l(l + 1)~2 and the square angular z-momentum is
m2

~
2. Since for a given value of l, the largest that |m| can be is l, the difference is at least

l(l + 1)~2 − l2~2 = l~2.

4.2.4 Angular momentum uncertainty

4.3 The Hydrogen Atom

4.3.1 The Hamiltonian

4.3.2 Solution using separation of variables

4.3.2.1 Solution hydb-a

Question:

Use the tables for the radial wave functions and the spherical harmonics to write down the
wave function

ψnlm = Rnl(r)Y
m
l (θ, φ)

for the case of the ground state ψ100.
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Check that the state is normalized. Note:
∫
∞

0
e−2uu2 du = 1

4
.

Answer:

The tables show that R10 = 2e−r/a0/
√
a30 and that Y 0

0 = 1/
√
4π, so

ψ100 =
1√
πa30

e−r/a0

The total probability of finding the particle integrated over all possible positions is, using
the techniques of volume integration in spherical coordinates:

∫
|ψ100|2 d3~r =

∫
∞

r=0

∫ π

θ=0

∫ 2π

φ=0

1

πa30
e−2r/a0r2 sin θ drdθdφ

or rearranging
1

π

∫
∞

r/a0=0

e−2r/a0
r2

a20
d
r

a0

∫ π

θ=0

sin θ dθ

∫ 2π

φ=0

1 dφ

giving
1

π
× 1

4
× 2× 2π

which is one as required.

4.3.2.2 Solution hydb-b

Question:

Use the generic expression

ψnlm = − 2

n2

√
(n− l − 1)!

[(n+ l)!a0]3

(
2ρ

n

)l

L2l+1
n+l

(
2ρ

n

)
e−ρ/nY m

l (θ, φ)

with ρ = r/a0 and Y m
l from the spherical harmonics table to find the ground state wave

function ψ100. Note: the Laguerre polynomial L1(x) = 1− x and for any p, Lp
1 is just its p-

th derivative.

Answer:

You get, substituting n = 1, l = 0, m = 0:

ψ100 = − 2

12

√
0!

[1!a0]3

(
2ρ

1

)0

L1
1

(
2ρ

1

)
e−ρ/1Y 0

0 (θ, φ)
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where 0! = 1! = 1, L1
1(x) is the first derivative of L1(x) = 1− x with respect to x, which is

−1, and Y 0
0 = 1/

√
4π according to the table. So you get

ψ100 =
1√
πa30

e−r/a0 .

as in the previous question.

4.3.2.3 Solution hydb-c

Question:

Plug numbers into the generic expression for the energy eigenvalues,

En = − ~
2

2mea20

1

n2
,

where a0 = 4πǫ0~
2/mee

2, to find the ground state energy. Express in eV, where 1 eV equals
1.602 2 10−19 J. Values for the physical constants can be found at the start of this section
and in the notations section.

Answer:

First verify the Bohr radius

a0 =
4π 8.854 10−12 C2/J m (1.054 6 10−34 J s)2

9.109 10−31 kg (1.602 2 10−19 C)2
= 0.529 2 10−10 m

Next, taking n = 1 for the ground state,

E1 = − (1.054 6 10−34J s)2

2 9.109 10−31 kg(0.529 2 10−10 m)2
1

12
= −2.179 9 10−18 J

1 eV

1.602 2 10−19 J

which gives E1 = −13.61 eV

4.3.3 Discussion of the eigenvalues

4.3.3.1 Solution hydc-a

Question:
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If there are infinitely many energy levels E1, E2, E3, E4, E5, E6, . . . , where did they all go
in the energy spectrum?

Answer:

The En for large values of n are all graphically indistinguishable from zero energy. The
electron is almost free from the nucleus in those energy states.

4.3.3.2 Solution hydc-b

Question:

What is the value of energy level E2? And E3?

Answer:

No need to put all the numbers into

En = − ~
2

2mea20

1

n2

because the only difference between E2 and E1 is just a final factor 1
4
. So E2 = 1

4
E1 = −3.4

eV. Similarly, E3 = 1
9
E1 = −1.51 eV.

4.3.3.3 Solution hydc-c

Question:

Based on the results of the previous question, what is the color of the light emitted in a
Balmer transition from energy E3 to E2? The Planck-Einstein relation says that the angular
frequency ω of the emitted photon is its energy divided by ~, and the wave length of light is
2πc/ω where c is the speed of light. Typical wave lengths of visible light are: violet 400 nm,
indigo 445 nm, blue 475 nm, green 510 nm, yellow 570 nm, orange 590 nm, red 650 nm.

Answer:

The energy carried away by the photon is the energy lost by the electron, which is

E3 − E2 = −1.51 eV + 3.4 eV = 1.89 eV
1.602 10−19 J

1 eV
= 3.026 10−19 J

Dividing by ~ = 1.054 10−34 J s gives the angular frequency to be 2.87 1015/s, and then the
wave length is 656 nm, using c = 3 108 m/s. That will be red light.
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4.3.3.4 Solution hydc-d

Question:

What is the color of the light emitted in a Balmer transition from an energy level En with
a high value of n to E2?

Answer:

It is like the previous question, except En will be approximately zero at high values of n.

En − E2 = 0 eV + 3.4 eV = 3.4 eV
1.602 10−19 J

1 eV
= 5.45 10−19 J

Dividing by ~ = 1.054 10−34 J s gives the angular frequency to be 5.17 1015/s, and then the
wave length is 364 nm. That will be near ultraviolet. The transition from E4 will produce
blue-green light, from E5 indigo, and from E6 violet.

4.3.4 Discussion of the eigenfunctions

4.3.4.1 Solution hydd-a

Question:

At what distance r from the nucleus does the square of the ground state wave function
become less than one percent of its value at the nucleus? Express it both as a multiple of
the Bohr radius a0 and in Å.

Answer:

The square wave function is

|ψ100(r)|2 =
1

πa30
e−2r/a0

and the value at the nucleus r = 0 is then

|ψ100(0)|2 =
1

πa30

For the value at r above to be one percent of this, you must have

e−2r/a0 = 0.01

or taking logarithm, r = 2.3 a0. Expressed in Å, a0 = 0.53 Å, so r = 1.22 Å.
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4.3.4.2 Solution hydd-b

Question:

Check from the conditions
n > l > |m|

that ψ200, ψ211, ψ210, and ψ21−1 are the only states of the form ψnlm that have energy E2. (Of
course, all their combinations, like 2px and 2py, have energy E2 too, but they are not simply
of the form ψnlm, but combinations of the “basic” solutions ψ200, ψ211, ψ210, and ψ21−1.)

Answer:

Since the energy is given to be En = E2, you have n = 2. The azimuthal quantum number l
must be a smaller nonnegative integer, so it can only be 0 or 1. In case l = 0, the absolute
value of the magnetic quantum number m cannot be more than zero, allowing only m = 0.
That is the ψ200 state. In the case that l = 1, the absolute value of m can be up to one,
allowing m = 1, 0, and −1.

4.3.4.3 Solution hydd-c

Question:

Check that the states

2px =
1√
2
(−ψ211 + ψ21−1) 2py =

i√
2
(ψ211 + ψ21−1)

are properly normalized.

Answer:

Find the square norm:

〈2px|2px〉 =
1

2
〈−ψ211 + ψ21−1|−ψ211 + ψ21−1〉

or multiplying out

〈2px|2px〉 =
1

2
(〈ψ211|ψ211〉+ 〈−ψ211|ψ21−1〉+ 〈ψ21−1|−ψ211〉+ 〈ψ21−1|ψ21−1〉)

or using the orthonormality of ψ211 and ψ21−1.

〈2px|2px〉 =
1

2
(1 + 0 + 0 + 1) = 1.
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For the state 2py, remember that i comes out of the left side of the inner product as −i:

〈2py|2py〉 =
−i2

2
〈ψ211 + ψ21−1|ψ211 + ψ21−1〉

The rest goes the same way.

4.4 Expectation Value and Standard Deviation

4.4.1 Statistics of a die

4.4.1.1 Solution esda-a

Question:

Suppose you toss a coin a large number of times, and count heads as one, tails as two. What
will be the expectation value?

Answer:

For a fair coin, the probability of heads or tails is the same; each will have a probability of
50% or 1

2
. So the expectation value is 1

2
× 1 + 1

2
× 2 = 1.5. This will be the average value

you obtain in a large number of throws.

4.4.1.2 Solution esda-b

Question:

Continuing this example, what will be the maximum deviation?

Answer:

If you throw a 1, the deviation is |1− 1.5| or 0.5. If you throw a 2, the deviation is |2− 1.5|,
also 0.5. So the maximum deviation is 0.5.
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4.4.1.3 Solution esda-c

Question:

Continuing this example, what will be the standard deviation?

Answer:

The average square deviation from 1.5 is:

1

2
(1− 1.5)2 +

1

2
(2− 1.5)2 =

1

4

Taking a square root, the standard deviation is 0.5. In this case the standard deviation is
the same as the maximum deviation, since the deviation from 1.5 is always 0.5 regardless
what you throw.

4.4.1.4 Solution esda-d

Question:

Have I got a die for you! By means of a small piece of lead integrated into its light-weight
structure, it does away with that old-fashioned uncertainty. It comes up six every time!
What will be the expectation value of your throws? What will be the standard deviation?

Answer:

The expectation value will, of course, be 6, every throw is a 6;

0 1 + 0 2 + 0 3 + 0 4 + 0 5 + 1 6 = 6,

and the standard deviation will, of course, be zero, no throw will deviate from the value 6;

σ = [0(1− 6)2 + 0(2− 6)2 + 0(3− 6)2 +

0(4− 6)2 + 0(5− 6)2 + 1(6− 6)2]1/2

= 0

4.4.2 Statistics of quantum operators
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4.4.2.1 Solution esdb-a

Question:

The 2px pointer state of the hydrogen atom was defined as

1√
2
(−ψ211 + ψ21−1) .

What are the expectation values of energy, square angular momentum, and z angular mo-
mentum for this state?

Answer:

Note that the square coefficients of the eigenfunctions ψ211 and ψ21−1 are each
1
2
, so each has

a probability 1
2
in the 2px state.

Eigenfunction ψ211 has an energy eigenvalue E2, and so does ψ21−1, so the expectation value
of energy in the 2px state is

〈E〉 = 1

2
E2 +

1

2
E2 = E2 = −3.4 eV.

This is as expected since the only value that can be measured in this state is E2.

Similarly, eigenfunction ψ211 has a square angular momentum eigenvalue 2~2, and so does
ψ21−1, so the expectation value of square angular momentum in the 2px state is that value,

〈L2〉 = 1

2
2~2 +

1

2
2~2 = 2~2.

Eigenfunction ψ211 has a z angular momentum eigenvalue ~, and ψ21−1 has −~, so the
expectation value of z angular momentum in the 2px state is

〈Lz〉 =
1

2
~− 1

2
~ = 0

Measurements in which the z angular momentum is found to be ~ average out against those
where it is found to be −~.

4.4.2.2 Solution esdb-b

Question:

Continuing the previous question, what are the standard deviations in energy, square angular
momentum, and z angular momentum?
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Answer:

Since the expectation value in energy is E2, as are the eigenvalues of each state, the standard
deviation is zero.

σE =

√
1

2
(E2 − E2)2 +

1

2
(E2 − E2)2 = 0.

This is expected since every measurement produces E2; there is no deviation from that value.

Similarly the standard deviation in L2 is zero:

σL2 =

√
1

2
(2~2 − 2~2)2 +

1

2
(2~2 − 2~2)2 = 0.

For the z angular momentum, the expectation value is zero but the two states have eigen-
values ~ and −~, so

σLz
=

√
1

2
(~− 0)2 +

1

2
(−~− 0)2 = ~.

Whether ~ or −~ is measured, the deviation from zero has magnitude ~.

4.4.3 Simplified expressions

4.4.3.1 Solution esdb2-a

Question:

The 2px pointer state of the hydrogen atom was defined as

1√
2
(−ψ211 + ψ21−1) .

where both ψ211 and ψ21−1 are eigenfunctions of the total energy Hamiltonian H with eigen-
value E2 and of square angular momentum L̂2 with eigenvalue 2~2; however, ψ211 is an
eigenfunction of z angular momentum L̂z with eigenvalue ~, while ψ21−1 is one with eigen-
value −~. Evaluate the expectation values of energy, square angular momentum, and z
angular momentum in the 2px state using inner products. (Of course, since 2px is already
written out in terms of the eigenfunctions, there is no simplification in this case.)

Answer:
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For energy you have,

〈E〉 = 1

2
〈−ψ211 + ψ21−1|H|−ψ211 + ψ21−1〉.

By the definition of eigenfunction, the products with H simplify:

〈E〉 = 1

2
〈−ψ211 + ψ21−1|−E2ψ211 + E2ψ21−1〉.

Multiplying out further, while noting that on account of orthonormality of the eigenstates,

〈ψ211|ψ211〉 = 〈ψ21−1|ψ21−1〉 = 1, 〈ψ211|ψ21−1〉 = 〈ψ21−1|ψ211〉 = 0,

you get 〈E〉 = E2.

Similarly, for the square angular momentum,

〈L2〉 = 1

2
〈−ψ211 + ψ21−1|L̂2|−ψ211 + ψ21−1〉.

or multiplying out

〈L2〉 = 1

2
〈−ψ211 + ψ21−1| − 2~2ψ211 + 2~2ψ21−1〉.

multiplying out further to 〈L2〉 = 2~2.

For the z angular momentum,

〈Lz〉 =
1

2
〈−ψ211 + ψ21−1|L̂z|−ψ211 + ψ21−1〉.

or multiplying out

〈Lz〉 =
1

2
〈−ψ211 + ψ21−1| − ~ψ211 − ~ψ21−1〉.

multiplying out further to 〈Lz〉 = 0.

4.4.3.2 Solution esdb2-b

Question:

Continuing the previous question, evaluate the standard deviations in energy, square angular
momentum, and z angular momentum in the 2px state using inner products.

Answer:

For energy you have,

σ2
E = 〈(H − E2)

2〉 = 1

2
〈−ψ211 + ψ21−1|(H − E2)

2|−ψ211 + ψ21−1〉.
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or multiplying out, noting that Hψ21±1 = E2ψ21±1, so that (H − E − 2)ψ21±1 = 0,

σ2
E =

1

2
〈−ψ211 + ψ21−1|−0ψ211 + 0ψ21−1〉.

which is zero. The same way, σL2 = 0.

For z angular momentum, you have, since the expectation value is zero,

σ2
Lz

= 〈(L̂z − 0)2〉 = 1

2
〈−ψ211 + ψ21−1|(L̂z − 0)2|−ψ211 + ψ21−1〉.

or multiplying out,

σ2
Lz

=
1

2
〈−ψ211 + ψ21−1| − ~

2ψ211 + ~
2ψ21−1〉

which multiplies out to ~
2, so σLz

itself is ~.

4.4.4 Some examples

4.5 The Commutator

4.5.1 Commuting operators

4.5.1.1 Solution commutea-a

Question:

The pointer state

2px =
1√
2
(−ψ211 + ψ21−1) .

is one of the eigenstates that H, L̂2, and L̂x have in common. Check that it is not an
eigenstate that H, L̂2, and L̂z have in common.
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Answer:

It is an eigenstate of H and L̂2, but not of L̂z. Since the z angular momentum of a ψnlm state
is m~, the combination above has a 50%/50% probability that the z angular momentum is
~ or −~.

4.5.2 Noncommuting operators and their commutator

4.5.3 The Heisenberg uncertainty relationship

4.5.3.1 Solution commutec-a

Question:

This sounds serious! If I am driving my car, the police requires me to know my speed (linear
momentum). Also, I would like to know where I am. But neither is possible according to
quantum mechanics.

Answer:

On second thought, maybe I can relax.

According to the uncertainty relationship, the uncertainties could be as small as, for example,
0.5 10−10 m in position and 10−24 kg m/s for linear momentum. I am not going to miss my
exit if I am mistaken by half an Å in where the car really is.

Also, 10−24 kg m/s of linear momentum for a 1 100 kg car corresponds to an uncertainty in
velocity of 2 10−27 mph. I don’t think the police is going to ticket me for going 2 10−27 mph
over the speed limit, since their laser displays do not have the 29 digits required to read off
75.000 000 000 000 000 000 000 000 002 mph.

The requirements of uncertainty that give rise to the very size of the atoms are immeasurably
small for the objects that populate the macroscopic world.
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4.5.4 Commutator reference

4.6 The Hydrogen Molecular Ion

4.6.1 The Hamiltonian

4.6.2 Energy when fully dissociated

4.6.3 Energy when closer together

4.6.4 States that share the electron

4.6.5 Comparative energies of the states
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4.6.6 Variational approximation of the ground state

4.6.6.1 Solution hione-a

Question:

The solution for the hydrogen molecular ion requires elaborate evaluations of inner product
integrals and a computer evaluation of the state of lowest energy. As a much simpler example,
you can try out the variational method on the one-dimensional case of a particle stuck inside
a pipe, as discussed in chapter 3.5. Take the approximate wave function to be:

ψ = ax(ℓ− x)

Find a from the normalization requirement that the total probability of finding the particle
integrated over all possible x positions is one. Then evaluate the energy 〈E〉 as 〈ψ|H|ψ〉,
where according to chapter 3.5.3, the Hamiltonian is

H = − ~
2

2m

∂2

∂x2

Compare the ground state energy with the exact value,

E1 = ~
2π2/2mℓ2

(Hints:
∫ ℓ

0
x(ℓ− x) dx = ℓ3/6 and

∫ ℓ

0
x2(ℓ− x)2 dx = ℓ5/30)

Answer:

To satisfy the normalization requirement that the particle must be somewhere, you need
〈ψ|ψ〉 = 1, or substituting for ψ,

1 = 〈ax(ℓ− x)|ax(ℓ− x)〉 = |a|2〈x(ℓ− x)|x(ℓ− x)〉

And by definition, chapter 2.3, the final inner product is just the integral
∫ ℓ

0
x2(ℓ − x)2 dx

which is given to be ℓ5/30. So you must have

|a|2 = 30

ℓ5

Now evaluate the expectation energy:

〈E〉 = 〈ax(ℓ− x)|H|ax(ℓ− x)〉 = |a|2
〈
x(ℓ− x)

∣∣∣∣−
~
2

2m

∂2

∂x2

∣∣∣∣x(ℓ− x)

〉
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You can substitute in the value of |a|2 from the normalization requirement above and apply
the Hamiltonian on the function to its right:

〈E〉 = 30

ℓ5
~
2

m
〈x(ℓ− x)|1〉

The inner product is by definition the integral
∫ ℓ

0
x(ℓ − x) dx, which was given to be ℓ3/6.

So the final expectation energy is

〈E〉 = ~
210

2mℓ2
versus

~
2π2

2mℓ2
exact.

The error in the approximation is only 1.3%! That is a surprisingly good result, since the
parabola ax(ℓ− x) and the sine a′ sin(πx/ℓ) are simply different functions. While they may
have superficial resemblance, if you scale each to unit height by taking a = 4/ℓ2 and a′ = 1,
then the derivatives at x = 0 and ℓ are 4/ℓ respectively π/ℓ, off by as much as 27%.

If you go the next logical step, approximating the ground state with two functions as

ψ = ax(ℓ− x) + bx2(ℓ− x)2

where a and b are related by the normalization requirement 〈ψ|ψ〉 = 1, you find a ground
state energy to a stunning, (for a two term approximation,) accuracy of 0.001 5%! However,
the algebra becomes impossibly messy, so it was left out of the questions list. Similarly, a
two point, linear interpolation, finite element version was left out, since there is so much
baggage, it would distract from the true purpose of this book, to bring across the basic ideas
of quantum mechanics to engineers.

Now, if you read the next subsection, you will see that in real-life, multi-dimensional, prob-
lems, getting results this accurate is difficult. Still, if you are desperate for a good solution of
these very complex problems by a simple and reliable means, variational methods are hard
to beat.

4.6.7 Comparison with the exact ground state
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Multiple-Particle Systems

5.1 Wave Function for Multiple Particles

5.1.1 Solution complex-a

Question:

A simple form that a six-dimensional wave function can take is a product of two three-di-
mensional ones, as in ψ(~r1,~r2) = ψ1(~r1)ψ2(~r2). Show that if ψ1 and ψ2 are normalized, then
so is ψ.

Answer:

This is a direct consequence of the fact that integrals can be factored if their integrands can
be and the limits of integration are independent of the other variable:

∫

all ~r1

∫

all ~r2

∣∣∣ψ1(~r1)ψ2(~r2)
∣∣∣
2

d3~r1d
3~r2 =

∫

all ~r1

∣∣∣ψ1(~r1)
∣∣∣
2

d3~r1

∫

all ~r2

∣∣∣ψ2(~r2)
∣∣∣
2

d3~r2 = 1

5.1.2 Solution complex-b

Question:

59
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Show that for a simple product wave function as in the previous question, the relative
probabilities of finding particle 1 near a position ~ra versus finding it near another position ~rb
is the same regardless where particle 2 is. (Or rather, where particle 2 is likely to be found.)

Note: This is the reason that a simple product wave function is called “uncorrelated.” For
particles that interact with each other, an uncorrelated wave function is often not a good
approximation. For example, two electrons repel each other. All else being the same, the
electrons would rather be at positions where the other electron is nowhere close. As a result,
it really makes a difference for electron 1 where electron 2 is likely to be and vice-versa. To
handle such situations, usually sums of product wave functions are used. However, for some
cases, like for the helium atom, a single product wave function is a perfectly acceptable first
approximation. Real-life electrons are crowded together around attracting nuclei and learn
to live with each other.

Answer:

The probability of finding particle 1 within a vicinity d3~r1 of ~ra and particle 2 within a
vicinity d3~r2 of ~r2 is:

ψ1(~ra)
∗ψ2(~r2)

∗ψ1(~ra)ψ2(~r2) d
3~r1d

3~r2

while the corresponding probability of finding particle 1 within a vicinity d3~r1 of ~rb and
particle 2 within a vicinity d3~r2 of ~r2 is:

ψ1(~rb)
∗ψ2(~r2)

∗ψ1(~rb)ψ2(~r2) d
3~r1d

3~r2.

Taking the ratio of the two probabilities, the chances of finding particle 1 at ~ra versus finding
it at ~rb are the same wherever particle 2 is likely to be found.

5.2 The Hydrogen Molecule

5.2.1 The Hamiltonian

5.2.1.1 Solution hmola-a

Question:



5.2. THE HYDROGEN MOLECULE 61

Verify that the repulsive potential between the electrons is infinitely large when the electrons
are at the same position.

Note: You might therefore think that the wave function needs to be zero at the locations
in six-dimensional space where ~r1 = ~r2. Some authors refer to that as a “Coulomb hole.”
But the truth is that in quantum mechanics, electrons are smeared out due to uncertainty.
That causes electron 1 to “see electron 2 at all sides”, and vice-versa, and they do therefore
not encounter any unusually large potential when the wave function is nonzero at ~r1 =
~r2. In general, it is just not worth the trouble for the electrons to stay away from the
same position: that would reduce their uncertainty in position, increasing their uncertainty-
demanded kinetic energy.

Answer:

The repulsive potential is the term

e2

4πǫ0

1

|~r1 −~r2|

and when ~r1 = ~r2, you are dividing by zero.

5.2.1.2 Solution hmola-b

Question:

Note that the total kinetic energy term is simply a multiple of the six-dimensional Laplacian
operator. It treats all Cartesian position coordinates exactly the same, regardless of which
direction or which electron it is. Is this still the case if other particles are involved?

Answer:

The kinetic energy of the two electrons is

− ~
2

2me

(
∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21
+

∂2

∂x22
+

∂2

∂y22
+

∂2

∂z2z

)
.

and the terms within the parentheses are the six-dimensional Laplacian. But if other particles
would be involved, they would have a different value of ~2/2m and the total operator would
no longer be the normal Laplacian.

All else being the same, heavier particles would have less kinetic energy. But, of course, all
else is usually not the same. For example, the atoms in noble gases have the same kinetic
energy at the same temperature regardless of atom mass.
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5.2.2 Initial approximation to the lowest energy state

5.2.2.1 Solution hmolb-a

Question:

If electron 2 does not affect where electron 1 is likely to be, how would a grey-scale picture
of the probability of finding electron 1 look?

Answer:

It would be a blob around the left proton, exactly like the one of a lone hydrogen atom at
that position.

5.2.2.2 Solution hmolb-b

Question:

When the protons are close to each other, the electrons do affect each other, and the wave
function above is no longer valid. But suppose you were given the true wave function, and
you were once again asked to draw the blob showing the probability of finding electron 1
(using a plotting package, say). What would the big problem be?

Answer:

Since electron 2 now affects where electron 1 is, you would have to draw a different blob for
every possible position of electron 2, an impossible task.

5.2.3 The probability density

5.2.3.1 Solution hmolc-a

Question:
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Suppose, given the wave function ψl(~r1)ψr(~r2), that you found an electron near the left
proton. What electron would it probably be? Suppose you found an electron at the point
halfway in between the protons. What electron would that likely be?

Answer:

The total probability of finding electron 1 at a position ~r is

∫
|Ψ(~r,~r2)|2 d3~r2 = |ψl(~r)|2

∫
|ψr(~r2)|2 d3~r2 = |ψl(~r)|2

since ψr is normalized. Similarly, the probability of finding electron 2 at position ~r is |ψr(~r)|2.

If ~r is close to the left proton, |ψl(~r)|2 is significant, but |ψr(~r)|2 is small, so you are much
more likely to find electron 1 there than electron 2.

But at the point halfway in between the protons, |ψl(~r)|2 and |ψr(~r)|2 are equal by symmetry,
and you are just as likely to find electron 1 there as electron 2.

5.2.4 States that share the electrons

5.2.4.1 Solution hmold-a

Question:

Obviously, the visual difference between the various states is minor. It may even seem
counter-intuitive that there is any difference at all: the states ψlψr and ψrψl are exactly the
same physically, with one electron around each proton. So why would their combinations be
any different?

The quantum difference would be much more clear if you could see the full six-dimensional
wave function, but visualizing six-dimensional space just does not work. However, if you
restrict yourself to only looking on the z-axis through the nuclei, you get a drawable z1, z2-
plane describing near what axial combinations of positions you are most likely to find the
two electrons. In other words: what would be the chances of finding electron 1 near some
axial position z1 and electron 2 at the same time near some other axial position z2?

Try to guess these probabilities in the z1, z2-plane as grey tones, (darker if more likely), and
then compare with the answer.
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Answer:

Here are the pictures, assuming the origin is halfway in between the protons:

z1 z1 z1 z1

z2 z2 z2 z2

Figure 5.1: Wave functions on the z-axis through the nuclei. From left to right: ψlψr, ψrψl,
the symmetric combination a(ψlψr + ψrψl), and the antisymmetric one a(ψlψr − ψrψl).

These results can be explained as follows: For the state ψlψr, electron 1 is around the left
proton, so its likely z1 positions are clustered around the position zlp of that proton, indicated
by a tick mark on the negative z1-axis in figure 5.1. Similarly electron 2 is around the right
proton, so its z2 positions are clustered around the positive value zrp indicated by the tick
mark on the positive z2 axis. This means the wave function, Ψ(0, 0, z1, 0, 0, z2), will look as
shown in the left picture of figure 5.1. It will be mostly in the quadrant of negative z1 and
positive z2.

Similarly ψrψl will look as the second picture. Here the positions of electron 1 cluster around
the positive position of the right proton and those of electron 2 around the negative position
of the left proton.

When you average the two states symmetrically, you get a two-blob picture like the third
picture. Now it is electron 1 around the left proton and electron 2 around the right one
or vice-versa. But there is still almost no probability of finding both protons in the first
quadrant, both near the right proton. Nor are you likely to find them in the third quadrant,
both near the left proton.

If you average the first two states antisymmetrically, you get the fourth picture. In the
antisymmetric combination, the wave function is zero on the symmetry line between the
blobs.

You see that the states are really different when looked at in the full six-dimensional space.

5.2.4.2 Solution hmold-b

Question:

extrascale=3,notransparent
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Based on the previous question, how would you think the probability density n(z) would
look on the axis through the nuclei, again ignoring the existence of positions beyond the
axis?

Answer:

For any state, the probability of finding electron 1 near a given z, regardless of where electron
2 is, is found by setting z1 equal to z and integrating over all possible positions z2 for electron
2. For the two-dimensional state ψlψr shown in the left column of figure 5.2, you are then
integrating over vertical lines in the top picture; imagine moving all blank ink vertically
towards the z1 axis and then setting z1 = z. The resulting curve is shown immediately
below. As expected, electron 1 is in this state most likely to be found somewhere around
zlp, the negative position of the left proton. Regardless of where electron 2 is.

z1 z1 z1 z1

z2 z2 z2 z2

z z z z

z z z z

z z z z

z z z z

n1 n1 n1 n1

n2 n2 n2 n2

n n n n

n n n n

Figure 5.2: Probability density functions on the z-axis through the nuclei. From left to
right: ψlψr, ψrψl, the symmetric combination a(ψlψr + ψrψl), and the antisymmetric one
a(ψlψr − ψrψl). From top to bottom, the top row of curves show the probability of finding
electron 1 near z regardless where electron 2 is. The second row shows the probability of
finding electron 2 near z regardless where electron 1 is. The third row shows the total
probability of finding either electron near z, the sum of the previous two rows. The fourth
row shows the same as the third, but assuming the true three-dimensional world rather than
just the line through the nuclei.

(Note that all possible positions of electron 2 should really be found by integrating over all
possible positions in three dimensions, not just axial ones. The final row in the figure gives
the total probabilities when corrected for that. But the idea is the same, just harder to
visualize.)

extrascale=3,notransparent
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The probability density at a given value of z also needs to include the possibility of finding
electron 2 there. That probability is found by setting z2 = z and then integrating over all
possible values of z1. You are now moving the blank ink horizontally towards the z2 axis,
and then setting z2 = z. The resulting curve is shown in the second graph in the left column
of figure 5.2. As expected, electron 2 is most likely to be found somewhere around zrp, the
positive position of the right proton.

To get the probability density, the chance of finding either proton near z, you need to add
the two curves together. That is done in the third graph in the left column of figure 5.2.
An electron is likely to be somewhere around each proton. This graph looks exactly like
the correct three-dimensional curve shown in the bottom graph, but that is really just a
coincidence.

The states ψrψl and a(ψlψr±ψrψl) can be integrated similarly; they are shown in the subse-
quent columns in figure 5.2. Note how the line of zero wave function in the antisymmetric case
disappears during the integrations. Also note that really, the probability density functions of
the symmetric and antisymmetric states are quite different, though they look qualitatively
the same.

5.2.5 Variational approximation of the ground state

5.2.6 Comparison with the exact ground state

5.3 Two-State Systems

5.3.1 Solution 2state-a

Question:
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The effectiveness of mixing states was already shown by the hydrogen molecule and molecular
ion examples. But the generalized story above restricts the “basis” states to be orthogonal,
and the states used in the hydrogen examples were not.

Show that if ψ1 and ψ2 are not orthogonal states, but are normalized and produce a real
and positive value for 〈ψ1|ψ2〉, like in the hydrogen examples, then orthogonal states can be
found in the form

ψ̄1 = α (ψ1 − εψ2) ψ̄2 = α (ψ2 − εψ1) .

For normalized ψ1 and ψ2 the Cauchy-Schwartz inequality implies that 〈ψ1|ψ2〉 will be less
than one. If the states do not overlap much, it will be much less than one and ε will be
small.

(If ψ1 and ψ2 do not meet the stated requirements, you can always redefine them by factors
aeic and be−ic, with a, b, and c real, to get states that do.)

Answer:

The inner product of ψ̄1 and ψ̄2 must be zero for them to be orthogonal:

α2 〈ψ1 − εψ2|ψ2 − εψ1〉 = 0

and this can be multiplied out, dropping the common factor α2 and noting that 〈ψ1|ψ1〉 and
〈ψ2|ψ2〉 are one, as

〈ψ1|ψ2〉ε2 − 2ε+ 〈ψ1|ψ2〉 = 0

for which the smallest root can be written as

ε =
〈ψ1|ψ2〉

1 +
√
1− 〈ψ1|ψ2〉2

.

That is less than 〈ψ1|ψ2〉, hence ε is small if the overlap is small.

The constant α follows from the requirement that the new states must still be normalized,
and is found to be

α =
1√

1− 2ε〈ψ1|ψ2〉+ ε2
.

Note that the denominator is nonzero; the argument of the square root exceeds (1− ε)2.

5.3.2 Solution 2state-b

Question:

Show that it does not have an effect on the solution whether or not the basic states ψ1 and
ψ2 are normalized, like in the previous question, before the state of lowest energy is found.



68 CHAPTER 5. MULTIPLE-PARTICLE SYSTEMS

This requires no detailed analysis; just check that the same solution can be described using
the nonorthogonal and orthogonal basis states. It is however an important observation for
various numerical solution procedures: your set of basis functions can be cleaned up and
simplified without affecting the solution you get.

Answer:

Using the original basis states, the solution, say the ground state of lowest energy, can be
written in the form

c1ψ1 + c2ψ2

for some values of the constants c1 and c2. Now the expression for the orthogonalized
functions,

ψ̄1 = α (ψ1 − εψ2) ψ̄2 = α (ψ2 − εψ1) ,

can for given ψ̄1 and ψ̄2 be thought of as two equations for ψ1 and ψ2 that can be solved. In
particular, adding ε times the second equation to the first gives

ψ1 =
ψ̄1 + εψ̄2

α(1− ε2)
.

Similarly, adding ε times the first equation to the second gives

ψ2 =
ψ̄2 + εψ̄1

α(1− ε2)
.

If this is plugged into the expression for the solution, c1ψ1 + c2ψ2, it takes the form

c̄1ψ̄1 + c̄2ψ̄2

where

c̄1 =
c1 + εc2
α(1− ε2)

c̄2 =
c2 + εc1
α(1− ε2)

.

So, while the constants c̄1 and c̄2 are different from c1 and c2, the same solution can be found
equally well in terms of ψ̄1 and ψ̄2 as in terms of ψ1 and ψ2.

In the terms of linear algebra, ψ̄1 and ψ̄2 “span the same function space” as ψ1 and ψ2: any
wave function that can be described as a combination of ψ1 and ψ2 can also be described in
terms of ψ̄1 and ψ̄2, although with different constants. This is true as long as the definitions
of the new functions can be solved for the old functions as above. The matrix of coefficients,
here (

α −αε
−αε α

)

must have a nonzero determinant.

5.4 Spin
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5.4.1 Solution spin-a

Question:

Delta particles have spin 3/2. What values can their spin angular momentum in a given
direction have?

Answer:

−3
2
~, −1

2
~, 1

2
~, 3

2
~.

Reread the text if you got this wrong, because spin is really, really, important in quantum
mechanics.

5.4.2 Solution spin-b

Question:

Delta particles have spin 3/2. What is their square spin angular momentum?

Answer:

s(s+ 1)~2 = 15
4
~
2.

5.5 Multiple-Particle Systems Including Spin

5.5.1 Wave function for a single particle with spin

5.5.1.1 Solution complexsa-a

Question:
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What is the normalization requirement of the wave function of a spin 1/2 particle in terms of
Ψ+ and Ψ−?

Answer:

The particle must be found somewhere, either with spin up or with spin down. The total
probability of finding it somewhere with spin up is

∫
|Ψ+|2d3~r, and the total probability of

finding it somewhere with spin down is
∫
|Ψ−|2d3~r. The sum of the two integrals must be

one to express the fact that the probability of finding the particle somewhere, either with
spin up or spin down, must be one, certainty.

5.5.2 Inner products including spin

5.5.2.1 Solution complexsai-a

Question:

Show that the normalization requirement for the wave function of a spin 1/2 particle in terms
of Ψ+ and Ψ− requires its norm

√
〈Ψ|Ψ〉 to be one.

Answer:

As a corresponding question in the previous subsection discussed; the total probability of
finding the particle somewhere with spin up is

∫
|Ψ+|2d3~r, and the total probability of finding

it somewhere with spin down is
∫
|Ψ−|2d3~r. The sum of the two integrals must be one to

express the fact that the probability of finding the particle somewhere, either with spin up
or spin down, must be one, certainty.

Compare that with the square norm of the wave function, which is by definition the inner
product of the wave function with itself:

〈Ψ|Ψ〉 = 〈Ψ+↑+Ψ−↓|Ψ+↑+Ψ−↓〉 = 〈Ψ+|Ψ+〉+ 〈Ψ−|Ψ−〉

and the final two inner products are by definition the two integrals above. Since their sum
must be one, it follows that the norm of the wave function

√
〈Ψ|Ψ〉 must be one even if there

is spin.
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5.5.2.2 Solution complexsai-b

Question:

Assume that ψl and ψr are normalized spatial wave functions. Now show that a combination
of the two like (ψl↑+ ψr↓)/

√
2 is a normalized wave function with spin.

Answer:

You have 〈
ψl↑+ ψr↓√

2

∣∣∣∣
ψl↑+ ψr↓√

2

〉
=

(
1√
2

)2

〈ψl↑+ ψr↓ |ψl↑+ ψr↓〉 ,

and multiplying out the inner product according to the rule spin-up components together
and spin-down components together,

=
1

2

(
〈ψl |ψl〉+ 〈ψr |ψr〉

)
,

and since it is given that ψl and ψr are normalized

=
1

2
(1 + 1) = 1.

5.5.3 Commutators including spin

5.5.3.1 Solution complexsac-a

Question:

Are not some commutators missing from the fundamental commutation relationship? For
example, what is the commutator [Ŝy, Ŝx]?

Answer:

Since the commutator is antisymmetric, [Ŝy, Ŝx] is the negative of [Ŝx, Ŝy], so it is −i~Ŝz.

5.5.4 Wave function for multiple particles with spin
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5.5.4.1 Solution complexsb-a

Question:

As an example of the orthonormality of the two-particle spin states, verify that 〈↑↑|↓↑〉 is
zero, so that ↑↑ and ↓↑ are indeed orthogonal. Do so by explicitly writing out the sums over
Sz1 and Sz2.

Answer:

The inner product is by definition

〈↑↑|↓↑〉 =
∑

Sz1=±
1
2
~

∑

Sz2=±
1
2
~

↑(Sz1)↑(Sz2) ↓(Sz1)↑(Sz2)

or writing out the second sum explicitly

〈↑↑|↓↑〉 =
∑

Sz1=±
1
2
~

[
↑(Sz1)↑(+1

2
~) ↓(Sz1)↑(+1

2
~) + ↑(Sz1)↑(−1

2
~) ↓(Sz1)↑(−1

2
~)
]

or writing out the first sum also explicitly

〈↑↑|↓↑〉 = ↑(+1
2
~)↑(+1

2
~) ↓(+1

2
~)↑(+1

2
~) + ↑(+1

2
~)↑(−1

2
~) ↓(+1

2
~)↑(−1

2
~) +

↑(−1
2
~)↑(+1

2
~) ↓(−1

2
~)↑(+1

2
~) + ↑(−1

2
~)↑(−1

2
~) ↓(−1

2
~)↑(−1

2
~)

and noting that ↑(−1
2
~) = 0 and ↓(+1

2
~) = 0, you see that all terms are zero.

5.5.4.2 Solution complexsb-b

Question:

A more concise way of understanding the orthonormality of the two-particle spin states is to
note that an inner product like 〈↑↑|↓↑〉 equals 〈↑|↓〉〈↑|↑〉, where the first inner product refers
to the spin states of particle 1 and the second to those of particle 2. The first inner product
is zero because of the orthogonality of ↑ and ↓, making 〈↑↑|↓↑〉 zero too.

To check this argument, write out the sums over Sz1 and Sz2 for 〈↑|↓〉〈↑|↑〉 and verify that
it is indeed the same as the written out sum for 〈↑↑|↓↑〉 given in the answer for the previous
question.

The underlying mathematical principle is that sums of products can be factored into separate
sums as in:

∑

all Sz1

∑

all Sz2

f(Sz1)g(Sz2) =

[
∑

all Sz1

f(Sz1)

][
∑

all Sz2

g(Sz2)

]



5.5. MULTIPLE-PARTICLE SYSTEMS INCLUDING SPIN 73

This is similar to the observation in calculus that integrals of products can be factored into
separate integrals:

∫

all ~r1

∫

all ~r2

f(~r1)g(~r2) d
3~r1 d

3~r2 =

[∫

all ~r1

f(~r1) d
3~r1

] [∫

all ~r2

g(~r2) d
3~r2

]

Answer:

〈↑|↓〉〈↑|↑〉 =


 ∑

Sz1=±
1
2
~

↑(Sz1)↓(Sz1)




 ∑

Sz2=±
1
2
~

↑(Sz2)↑(Sz2)




and written out

〈↑|↓〉〈↑|↑〉 =
[
↑(+1

2
~)↓(+1

2
~) + ↑(−1

2
~)↓(−1

2
~)
] [
↑(+1

2
~)↑(+1

2
~) + ↑(−1

2
~)↑(−1

2
~)
]

and multiplying out, and reordering the second and third factor in each term, you see it is
the same as the expression obtained in the answer to the previous question,

〈↑↑|↓↑〉 = ↑(+1
2
~)↑(+1

2
~) ↓(+1

2
~)↑(+1

2
~) + ↑(+1

2
~)↑(−1

2
~) ↓(+1

2
~)↑(−1

2
~) +

↑(−1
2
~)↑(+1

2
~) ↓(−1

2
~)↑(+1

2
~) + ↑(−1

2
~)↑(−1

2
~) ↓(−1

2
~)↑(−1

2
~).

5.5.5 Example: the hydrogen molecule

5.5.5.1 Solution complexsc-a

Question:

Show that the normalization requirement for ψgs means that

|a++|2 + |a+−|2 + |a−+|2 + |a−−|2 = 1

Answer:

For brevity, write
ψgs,0 = a [ψl(~r1)ψr(~r2) + ψr(~r1)ψl(~r2)]
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so that

ψgs = a++ψgs,0↑↑+ a+−ψgs,0↑↓+ a−+ψgs,0↓↑+ a−−ψgs,0↓↓.

For ψgs to be normalized, its square norm must be one:

〈ψgs|ψgs〉 = 1.

According to the previous subsection, this inner product evaluates as the sum of the inner
products of the matching spin components:

〈a++ψgs,0|a++ψgs,0〉+ 〈a+−ψgs,0|a+−ψgs,0〉+ 〈a−+ψgs,0|a−+ψgs,0〉+ 〈a−−ψgs,0|a−−ψgs,0〉 = 1

Now the constants a±± can be pulled out of the inner products as |a±±|2, and the inner
products that are left, all 〈ψgs,0|ψgs,0〉, are one since ψgs,0 was normalized through the choice
of the constant a. So the claimed expression results.

5.5.6 Triplet and singlet states

5.5.6.1 Solution complexse-a

Question:

Like the states ↑↑, ↑↓, ↓↑, and ↓↓; the triplet and singlet states are an orthonormal quartet.
For example, check that the inner product of |1 0〉 and |0 0〉 is zero.

Answer:

By definition, the inner product is

〈
1√
2
(↑↓+ ↓↑)

∣∣∣∣
1√
2
(↑↓ − ↓↑)

〉
=

1

2

〈
↑↓+ ↓↑

∣∣∣↑↓ − ↓↑
〉

and multiplying out, that becomes

1

2
(〈↑↓|↑↓〉 − 〈↑↓|↓↑〉+ 〈↓↑|↑↓〉 − 〈↓↑|↓↑〉)

and using orthonormality of the arrow combinations, that is

1

2
(1− 0 + 0− 1) = 0
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5.6 Identical Particles

5.6.1 Solution ident-a

Question:

Check that indeed any linear combination of the triplet states is unchanged under particle
exchange.

Answer:

In the notations of the previous section, the most general linear combination of the triplet
states takes the form:

a1|1 1〉+ a2|1 0〉+ a3|1 1〉
or writing out their definitions as found there,

a1↑↑+ a2
1√
2
(↑↓+ ↓↑) + a3↓↓.

Exchanging the two particles involved means to interchange the order of each pair of arrows,
since by definition the first arrow refers to particle 1 and the second to particle 2. A look
at the expression above shows that such an interchange of order does absolutely nothing to
these states.

5.6.2 Solution ident-b

Question:

Suppose the electrons of the hydrogen molecule are in the excited antisymmetric spatial state

a [ψl(~r1)ψr(~r2)− ψr(~r1)ψl(~r2)] .

In that case what can you say about the spin state?

Yes, in this case the spin would be less restricted if the electrons were bosons. But antisym-
metric spatial states themselves are pretty restrictive in general. The precise sense in which
the antisymmetrization requirement is more restrictive than the symmetrization requirement
will be explored in the next section.
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Answer:

Since the excited spatial state takes care of the sign change, the spin state should remain
unchanged under the electron exchange. That is true for the three triplet states, but not for
the singlet state, so the spin state can be any combination of the three triplet states. The
complete wave function must therefore be of the form

a [ψl(~r1)ψr(~r2)− ψr(~r1)ψl(~r2)] [a1|1 1〉+ a2|1 0〉+ a3|1 1〉]

You can also derive this using the arrow combinations like was done in the text for the
ground state. Then the requirements are that a++ = a++ and a−− = a−−, which is trivial,
and that a+− = a−+, which restricts the mixed spin states to the triplet combination. In
those terms the constants above are a1 = a++, a3 = a−−, and a2 =

√
2a+−.

5.7 Ways to Symmetrize the Wave Function

5.7.1 Solution symways-a

Question:

How many single-particle states would a basic Hartree-Fock approximation use to compute
the electron structure of an arsenic atom? How many Slater determinants would that involve?

Answer:

Hartree-Fock would use 33 single-particle states, combining into a single Slater determinant.

5.7.2 Solution symways-b

Question:

If two more single-particle states would be used to improve the accuracy for the arsenic
atom, (one more normally does not help), how many Slater determinants could be formed
with those states?

Answer:
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The 34-th state would introduce 33 more Slater determinants, and the 35-th another 561,
for a total of 595.

5.8 Matrix Formulation

5.8.1 Solution matfor-a

Question:

As a relatively simple example, work out the above ideas for the Q = 2 hydrogen molecule
spatial states ψS

1 = ψlψr and ψ
S
2 = ψlψr. Write the matrix eigenvalue problem and identify

the two eigenvalues and eigenvectors. Compare with the results of section 5.3.

Assume that ψl and ψr have been slightly adjusted to be orthonormal. Then so are ψS
1 and

ψS
2 orthonormal, since the various six-dimensional inner product integrals, like

〈ψS
1 |ψS

2 〉 ≡ 〈ψlψr|ψrψl〉 ≡
∫

all ~r1

∫

all ~r2

ψl(~r1)ψr(~r2) ψr(~r1)ψl(~r2) d
3~r1 d

3~r2

can according to the rules of calculus be factored into three-dimensional integrals as

〈ψS
1 |ψS

2 〉

=

[∫

all ~r1

ψl(~r1) ψr(~r1) d
3~r1

] [∫

all ~r2

ψr(~r2) ψl(~r2) d
3~r2

]

= 〈ψl|ψr〉〈ψr|ψl〉
which is zero if ψl and ψr are orthonormal.

Also, do not try to find actual values for H11, H12, H21, and H22. As section 5.2 noted, that
can only be done numerically. Instead just refer to H11 as J and to H12 as −L:

H11 ≡ 〈ψS
1 |HψS

1 〉 ≡ 〈ψlψr|Hψlψr〉 ≡ J

H12 ≡ 〈ψS
1 |HψS

2〉 ≡ 〈ψlψr|Hψrψl〉 ≡ −L.
Next note that you also have

H22 ≡ 〈ψS
2 |HψS

2 〉 ≡ 〈ψrψl|Hψrψl〉 = J

H21 ≡ 〈ψS
2 |HψS

1 〉 ≡ 〈ψrψl|Hψlψr〉 = −L
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because they are the exact same inner product integrals; the difference is just which electron
you number 1 and which one you number 2 that determines whether the wave functions are
listed as ψlψr or ψrψl.

Answer:

Using the abbreviations J and L, the matrix eigenvalue problem becomes

Ja1 − La2 = Ea1
−La1 + Ja2 = Ea2

or taking everything to the left hand side,

(J − E) a1 − La2 = 0
−La1 + (J − E) a2 = 0

.

For this homogeneous system of equations to have a solution other than the trivial one a1 =
a2 = 0, the determinant of the matrix must be zero:

∣∣∣∣
(J − E) −L
−L (J − E)

∣∣∣∣ = 0 =⇒ (J − E)2 − L2 = 0

which allows for the two possibilities

J − E = L or J − E = −L.

So there are two energy eigenvalues:

E1 = J − L and E2 = J + L.

In the first case, since according to the equations above

(J − E1) a1 − La2 = 0 =⇒ La1 − La2 = 0

it follows that a1 and a2 must be equal, producing the eigenfunction

a1
(
ψS
1 + ψS

2

)
= a1 (ψlψr + ψrψl)

and normalization shows that a1 = 1/
√
2, assuming you take it real and positive, (and

assuming that ψl and ψr are really adjusted to be orthonormal as assumed in this particular
question).

So the first energy eigenstate is

eigenfunction:
1√
2
(ψlψr + ψrψl) eigenvalue: E1 = J − L
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Similarly the second energy eigenstate is

eigenfunction:
1√
2
(ψlψr − ψrψl) eigenvalue: E2 = J + L.

Comparing with section 5.3, the first eigenstate can be recognized as the ground state in
which the nuclei share the electrons symmetrically. The second eigenstate is the excited-
energy antisymmetric state in which the electrons share the electrons antisymmetrically.
Other states of this type, like simply ψlψr, say, have expectation energy somewhere in between
E1 and E2, but they are not eigenstates and do not have definite energy.

Of course, the analysis here is approximate. But as discussed more in the earlier section
5.2, the true ground state is really symmetric, and the excited energy eigenstate really
is antisymmetric. After all, the Hamiltonian commutes with the operation of swapping the
electrons, (swapping the electrons does not do anything physically,) so the energy eigenstates
must also be eigenstates of the swapping operator. The symmetric state is an eigenstate of
the swapping operator with eigenvalue 1, it stays the same, and the antisymmetric state is
an eigenstate with eigenvalue −1; it changes sign under the swap.

5.8.2 Solution matfor-b

Question:

Find the eigenstates for the same problem, but now including spin.

As section 5.7 showed, the antisymmetric wave function with spin consists of a sum of six
Slater determinants. Ignoring the highly excited first and sixth determinants that have the
electrons around the same nucleus, the remaining C = 4 Slater determinants can be written
out explicitly to give the two-particle states

ψS
1 =

ψlψr↑↑ − ψrψl↑↑√
2

ψS
2 =

ψlψr↑↓ − ψrψl↓↑√
2

ψS
3 =

ψlψr↓↑ − ψrψl↑↓√
2

ψS
4 =

ψlψr↓↓ − ψrψl↓↓√
2

Note that the Hamiltonian does not involve spin, to the approximation used in most of this
book, so that, following the techniques of section 5.5, an inner product like H23 = 〈ψS

2 |HψS
3 〉

can be written out like

H23 =
1

2
〈ψlψr↑↓ − ψrψl↓↑|H(ψlψr↓↑ − ψrψl↑↓)〉

=
1

2
〈ψlψr↑↓ − ψrψl↓↑|(Hψlψr)↓↑ − (Hψrψl)↑↓〉
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and then multiplied out into inner products of matching spin components to give

H23 = −1

2
〈ψlψr|Hψrψl〉 −

1

2
〈ψrψl|Hψlψr〉 = L.

The other 15 matrix coefficients can be found similarly, and most will be zero.

If you do not have experience with linear algebra, you may want to skip this question, or
better, just read the solution. However, the four eigenvectors are not that hard to guess;
maybe easier to guess than correctly derive.

Answer:

Evaluating all 16 inner products Hkk as above, the matrix eigenvalue problem is found to be

(J + L)a1 + 0a2 + 0a3 + 0a4 = Ea1
0a1 + Ja2 + La3 + 0a4 = Ea2
0a1 + La2 + Ja3 + 0a4 = Ea3
0a1 + 0a2 + 0a3 + (J + L)a4 = Ea4

After bringing everything to the left hand side, the determinant of the resulting matrix can
again be set to zero, and the possible energy values found. From those the eigenvectors
can be deduced. It turns out that the larger eigenvalue is triply degenerate, so the three
corresponding eigenvectors are not unique; more than one acceptable choice exists for them.
However, you do have to normalize them to unit length and ensure that they are mutually
orthogonal.

Rather than going through that math, it is quicker just to guess the eigenvectors. One guess
that works is

(a1, a2, a3, a4) = (1, 0, 0, 0).

Just substitute a1 = 1 and a2 = a3 = a4 = 0 into the equations above and see that they
are satisfied provided that the energy E has the excited value J + L. The corresponding
eigenfunction ψ1 = ψS

1 has, according to its definition above, both electrons spin-up and in
the excited antisymmetric spatial state (ψlψr − ψrψl)/

√
2.

A similar guess that works is

(a1, a2, a3, a4) = (0, 0, 0, 1).

This corresponds to the eigenfunction ψ2 = ψS
4 in which both electrons are spin-down, and

again in the antisymmetric spatial state. The third one that works is

(a1, a2, a3, a4) = (0, 1, 1, 0)/
√
2

where the scale factor
√
2 is only needed to ensure that the vector is of unit length. The

eigenstate ψ3 = (ψS
2 +ψS

3 )/
√
2 corresponds, according to the definitions of ψS

2 and ψS
3 above,
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to the electrons being in the antisymmetric spatial state times the |1 0〉 triplet state of section
5.5.6. The energy is again the elevated value J + L.

The final eigenvector
(a1, a2, a3, a4) = (0, 1,−1, 0)/

√
2,

gives the eigenstate ψ4 = (ψS
2 − ψS

3 )/
√
2. This corresponds to the electrons being in the

symmetric spatial state times the singlet spin state. The energy is the ground state value
J − L.

5.9 Heavier Atoms

5.9.1 The Hamiltonian eigenvalue problem

5.9.2 Approximate solution using separation of variables

5.9.3 Hydrogen and helium

5.9.4 Lithium to neon

5.9.5 Sodium to argon
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5.9.6 Potassium to krypton

5.9.7 Full periodic table

5.10 Pauli Repulsion

5.11 Chemical Bonds

5.11.1 Covalent sigma bonds

5.11.2 Covalent pi bonds

5.11.3 Polar covalent bonds and hydrogen bonds
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5.11.4 Promotion and hybridization

5.11.5 Ionic bonds

5.11.6 Limitations of valence bond theory
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6.1 Intro to Particles in a Box

6.2 The Single-Particle States

6.3 Density of States
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6.5 About Temperature

6.6 Bose-Einstein Condensation

6.6.1 Rough explanation of the condensation

6.7 Bose-Einstein Distribution

6.8 Blackbody Radiation

6.9 Ground State of a System of Electrons

6.10 Fermi Energy of the Free-Electron Gas
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6.11 Degeneracy Pressure

6.12 Confinement and the DOS

6.13 Fermi-Dirac Distribution

6.14 Maxwell-Boltzmann Distribution

6.15 Thermionic Emission

6.16 Chemical Potential and Diffusion

6.17 Intro to the Periodic Box
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6.18 Periodic Single-Particle States

6.19 DOS for a Periodic Box

6.20 Intro to Electrical Conduction

6.21 Intro to Band Structure

6.21.1 Metals and insulators

6.21.2 Typical metals and insulators

6.21.3 Semiconductors
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6.21.4 Semimetals

6.21.5 Electronic heat conduction

6.21.6 Ionic conductivity

6.22 Electrons in Crystals

6.22.1 Bloch waves

6.22.2 Example spectra

6.22.3 Effective mass
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6.22.4 Crystal momentum

6.22.5 Three-dimensional crystals

6.23 Semiconductors

6.24 The P-N Junction

6.25 The Transistor

6.26 Zener and Avalanche Diodes

6.27 Optical Applications
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6.27.1 Atomic spectra

6.27.2 Spectra of solids

6.27.3 Band gap effects

6.27.4 Effects of crystal imperfections

6.27.5 Photoconductivity

6.27.6 Photovoltaic cells

6.27.7 Light-emitting diodes
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6.28 Thermoelectric Applications

6.28.1 Peltier effect

6.28.2 Seebeck effect

6.28.3 Thomson effect
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Time Evolution

7.1 The Schrödinger Equation

7.1.1 The equation

7.1.2 Solution of the equation

7.1.2.1 Solution schrodsol-a

Question:

The energy of a photon is ~ω where ω is the classical frequency of the electromagnetic field
produced by the photon. So what is e−iE~nt/~ for a photon? Are you surprised by the result?

Answer:

92
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The exponential e−iE~nt/~ becomes e−iωt. That is the classical time dependence of the elec-
tromagnetic field.

The result is not really surprising, because of the wave-particle dualism of quantum mechan-
ics. Classical physics understands the wave nature of light well, and not its particle nature.
This is the opposite of the situation for an electron, where classical physics understands the
particle nature, and not the wave nature.

7.1.2.2 Solution schrodsol-b

Question:

For the one-dimensional harmonic oscillator, the energy eigenvalues are

En =
2n+ 1

2
ω

Write out the coefficients cn(0)e
−iEnt/~ for those energies.

Now classically, the harmonic oscillator has a natural frequency ω. That means that whenever
ωt is a whole multiple of 2π, the harmonic oscillator is again in the same state as it started
out with. Show that the coefficients of the energy eigenfunctions have a natural frequency of
1
2
ω; 1

2
ωt must be a whole multiple of 2π for the coefficients to return to their original values.

Answer:

The coefficients are

cn(0)e
−i

(2n+1)
2

ωt

Now if ωt is 2π, the argument of the exponential equals i times an odd multiple of π. That
makes the exponential equal to minus one. It takes until ωt = 4π until the exponential
returns to its original value one.

7.1.2.3 Solution schrodsol-c

Question:

Write the full wave function for a one-dimensional harmonic oscillator. Formulae are in
chapter 4.1.2.

Answer:
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Using the give formulae

Ψ(x, t) =
∞∑

n=0

cn(0)e
−i

(2n+1)
2

ωthn(x)

7.1.3 Energy conservation

7.1.4 Stationary states

7.1.5 The adiabatic approximation

7.2 Time Variation of Expectation Values

7.2.1 Newtonian motion

7.2.2 Energy-time uncertainty relation
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7.4.4 Selection rules

7.5 Symmetric Two-State Systems
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98 CHAPTER 7. TIME EVOLUTION

7.10.2 Component wave solutions

7.10.3 Wave packets

7.10.4 Group velocity

7.10.5 Electron motion through crystals

7.11 Almost Classical Motion

7.11.1 Motion through free space
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1

~

∫ x2

x=x1

pc(x) dx = nπ

to find the WKB approximation for the energy levels of a particle stuck in a pipe of chapter
3.5.5. The potential V is zero inside the pipe, given by 0 6 x 6 ℓx

In this case, the WKB approximation produces the exact result, since the classical momen-
tum really is constant. If there was a force field in the pipe, the solution would only be
approximate.

Answer:

Substituting in pc =
√
2mE, x1 = 0 and x2 = ℓx,

1

~

√
2mEℓx = nπ
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and squaring both sides, the energy is found as E = n2
~
2π2/2mℓ2x. That is the same result

as in chapter 3.5.5, but obtained in a much easier way.

A.28.2 Solution wkb-b

Question:

Use the equation
1

~

∫ x2

x=x1

pc(x) dx = (n− 1
2
)π

to find theWKB approximation for the energy levels of the harmonic oscillator. The potential
energy is 1

2
mωx2 where the constant ω is the classical natural frequency. So the total energy,

expressed in terms of the turning points x2 = −x1 at which E = V , is E = 1
2
mωx2

2.

In this case too, the WKB approximation produces the exact energy eigenvalues. That,
however, is just a coincidence; the classical WKB wave functions are certainly not exact;
they become infinite at the turning points. As the example h50 above shows, the true wave
functions most definitely do not.

Answer:

Substituting in pc =
√
2m(E − V ), with V = 1

2
mω2x2 and E = 1

2
mω2x2

2, produces

1

~

∫ x2

x=−x2

mω
√
x22 − x2 dx = (n− 1

2
)π

The integral can be done by making the substitution x = x2 sin(α):

1

~
mωx22

∫ π/2

α=−π/2

cos2 α dα = (n− 1
2
)π

and the remaining integral is 1
2
π:

1

~
mωx22

1
2
π = (n− 1

2
)π

So, since E = 1
2
mω2x2

2, the energy levels are found to be En = (n − 1
2
)~ω. That is exact;

the fact that in this case the values of n are counted from one instead of zero is just a matter
of notations. Despite the imperfect wave functions, it sure is a lot simpler than the exact
derivation of chapter 4.1 as found in its note.

A.29 WKB solution near the turning points
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Web Pages

Below is a list of relevant web pages.

1. ENSDF data1

The Nuclear Data Sheets are an authoritative and comprehensive data source
on nuclei. The corresponding
Nuclear Data Sheets policies2

have been used repeatedly in this book to decide what conventions to take as
standard.

2. NIST data3

Authoritative values of physical constants from NIST.
3. NuDat 2 database4

Extensive information about nuclei provided by the National Nuclear Data
Center.

4. Anthony Stone’s Wigner coefficient calculators5

The calculator on this site gives exact values for the Wigner 3j, 6j, and 6j
symbols. The 3j symbols are readily converted to Clebsch-Gordan coefficients,
{N.13}.

5. TUNL Nuclear Data Evaluation Group6

Extensive data on light nuclei from A = 3 to 20.
6. Wikipedia7

Probably this book’s primary source of information on about every loose end,
though somewhat uneven. Some great, some confusing, some overly technical.

1http://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
2http://www.nndc.bnl.gov/nds/NDSPolicies.pdf
3http://www.nist.gov/pml/data/
4http://www.nndc.bnl.gov/nudat2/
5http://www-stone.ch.cam.ac.uk/wigner.html
6http://www.tunl.duke.edu/nucldata/
7http://wikipedia.org
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