Clogging of Leachate Collection Systems in Florida

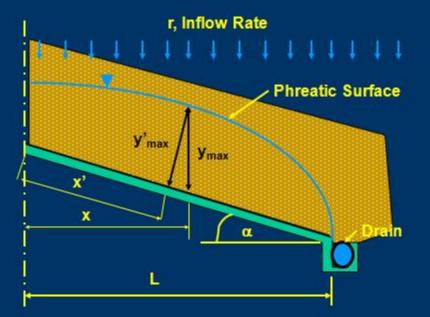
Dr. Tarek Abichou Daria Sakharova

Our overall long-term Research Objectives

We want to:

- Introduce clogging verification into design approaches and into design manuals
- We feel that LCS design has not received the attention it should to allow for longterm impact of landfills

Rationale


- The purpose of LCSs is to collect and remove the leachate from the bottom of landfill and therefore minimize the leachate head which provides the driving force for the leakage of contaminants to the surrounding environment.
- Since the contaminating lifespan of a landfill may be decades or even centuries, the performance of the LCS is critical for a well-designed modern landfill
- There is a need to be able to predict the service life of a given system.

Research Objectives of original Proposal

- Use the reduction in pore space to predict change of hydraulic properties
- Predict leachate head on liner with time using Florida specific leachate composition and generation data for typical landfills operated in different micro-climates of the state.
- Assess Effects and the extent of the co-disposal of MSW and WTE by-products.
- Examine the adequacy of the current design methodology of leachate collection systems in the state of Florida.
- Develop a protocol to estimate service life of LCSs in different regions of Florida for different landfill disposal practices.

Criteria of LCS:

117

Phreatic Surface in Landfill Drainage Layer,

Districts

- Divided the state into 6 districts following FDEP's map
- Select 3 county landfills from each district
 - Ensure as much diversity in climate as possible
- Compile parameters from each LF into excel, organized by year

NED - Columbia County	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2004	2005	2006	2008	2009	2010	2011	2012	2013
IRON (FE)					49000	36000	1300		1300		8800	16200	6430		11800	22700	9530	14900	1070
COD, CHEMICAL OXYGEN DEMAND																1700	580	595	91
CHLORIDE					300	320	50		30		500	413	800		1100	1700	1300	1350	170
ALKALINITY, TOTAL (CACO3)					660	760	640		140		830	985	1500		1600	1900	1600	1820	320
SPEC. CONDUCTANCE (FIELD)					2320	2600		478	437		3333	3279	4890		6874	6849	6931	7226	1312
DISSOLVED OXYGEN (FIELD BY PROBE)					1.4	1.6		2.5	1.9		2.57	3.26	1.62		1.03	0.71	0.92	1.19	3.67
TEMPERATURE (FIELD)						23.7		21.9	20.2		23.6	22	22.61		24.04	25.54	26.19	24.17	25.64
TURBIDITY, FIELD						268	1000	60.4	12.8		292	270	69.3		117	204	102	62.3	9.96
PH, FIELD					6.3	6.54		6.96	7.52		6.83	6.96	7.8		6.82	6.92	7.17	6.8	7.56
AMMONIA (NH3) TOTAL AS N					120	100	180		6.7		150	156	200		230	350	350	443	35
BOD, 5 DAY, 20 DEG C																	17	60.9	16
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)					790	900	1200		270		1300	1350	2300		2600	2800	2300	2850	680
SODIUM					180	210	160		20		290	279	513		563	588	639	766	95.7
COPPER											50	0.6	3.1		2.2	2.2	2.2	2.5	2.88
BOD/COD																	0.0293	0.1024	0.1758
NED - Duval County	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2004	2005	2006	2008	2009	2010	2011	2012	2013
IRON (FE)										30000				11000			71000	77000	59000
COD, CHÉMICAL OXYGEN DEMAND																			
CHLORIDE										1600				1900			2700	3100	2800
ALKALINITY, TOTAL (CACO3)										4500				1					
SPEC, CONDUCTANCE (FIELD)										9300				15160			20590	22810	18810
DISSOLVED OXYGEN (FIELD BY PROBE)										0.4				0.6			0.1	0.2	0.1
TEMPERATURE (FIELD)										18.1				28.6			35.9	38.2	25.6
TURBIDITY, FIELD										1000				14 (lab)					
PH, FIELD										7.73				7.35			7.29	7.35	7.79
AMMONIA (NH3) TOTAL AS N										360				1000			1300	1700	1200
BOD, 5 DAY, 20 DEG C																			
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)										4400				5700			12000	12000	12000
SODIUM										680				1600			2600	2900	520
COPPER										770				12			15	55	15
	4000	4000	4004	40.05	40.04	40.07	4000	40.00	0000	0004	0004	0005	0000	0000	0000	0.040	0.044	0040	0.040
NED - Putnam County	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2004	2005	2006	2008	2009	2010	2011	2012	2013
IRON (FE) COD, CHEMICAL OXYGEN DEMAND	59000	62000	46000	38000	23000	17000		17000					13000						
CHEORIDE				758 1080	1100	1000		960					1200						
ALKALINITY, TOTAL (CACO3)	400	4300	0000	3680	3920	3500		3000					3700						
SPEC. CONDUCTANCE (FIELD)	420	4300	2980	3400	8500	314		4.8					9833						
DISSOLVED OXYGEN (FIELD BY PROBE)	4	01.4	00.4	0.8	2.5	3.2		6.2					1.31						
TEMPERATURE (FIELD) TURBIDITY, FIELD	27.7	21.4	22.1	24	24.1	20.1		30					27.58						
		2.04	3.02	140	114.2	39.7		74.5					24.9						
PH, FIELD	6.2	7.06	7.07	7.04	7.74	7		7.3					7.13						
AMMONIA (NH3) TOTAL AS N		000	040	123	64.2	480		420					600						
BOD, 5 DAY, 20 DEG C	418	898	213	81	4000	0000		0500					1000						
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)				3860	4300	3600		3500					4200						
SODIUM			280	890	1000	570 2.5		210 20					1000						
COPPER																			

NWD - Jackson County	1993	1994	1995	1996	1997	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
IRON (FE)		21.1										19000	40000	8100	7200
COD, CHÉMICAL OXYGEN DEMAND													13000	12000	5700
CHLORIDE		731										1700	2500	2700	2300
ALKALINITY, TOTAL (CACO3)		2320										6000	8600	8300	6400
SPEC, CONDUCTANCE (FIELD)		4270										15670	25460	19980	17420
DISSOLVED OXYGEN (FIELD BY PROBE)		1.6										0.9	0.6	0.3	0.1
TEMPERATURE (FIELD)												16.3	27.7	25.8	25.7
TURBIDITY, FIELD												329.7	411.6	35.47	31.66
PH, FIELD		7.72										7.93	7.52	7.73	7.57
AMMONIA (NH3) TOTAL AS N		381										110	1700	1900	4000
BOD, 5 DAY, 20 DEG C													4100	1400	192.3
TOTAL DISSOLVED SOLIDS TDS, (RES DISS	1	2730										6800	9500	10000	9000
SODIUM												1800	2700	2400	2400
COPPER												5.6	23	17	76
NWD - Escambia County	1993	1994	1995	1996	1997	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
IRON (FE)	1000	1004	1335	28	1001	2004	2005	4300	5650	2000	2003	2010	7200	6270	2015
COD, CHEMICAL OXYGEN DEMAND			10	20				4000	920				2200	1100	
CHLORIDE			1100	710				700	650				1500	950	
ALKALINITY, TOTAL (CACO3)			100	110				2100	2400				5000	2200	
SPEC. CONDUCTANCE (FIELD)			680	5600				3979	6652				11362	6523	
DISSOLVED OXYGEN (FIELD BY PROBE)			0.06	4.8				0.9	0.34				0.5	4.36	
TEMPERATURE (FIELD)			30.2	25.9				31.45	15.86				17.05	16.92	
TURBIDITY, FIELD			3U.Z	20.0				- 31.45 16	40				120	10.32	
PH, FIELD			7.5	5.9				6.99	40 8.04				8.42	8.47	
AMMONIA (NH3) TOTAL AS N			420	250				300	340				0.42	260	
BOD, 5 DAY, 20 DEG C			420	200				JUU	50				110	200	
TOTAL DISSOLVED SOLIDS TDS, (RES DISS			4400	2800				0700	3500				6100	3600	
BICARBONATE ION (HCO3) LAB	•		1100 0.5	2000				2700	2400				0100	3600	
SODIUM				670				c 0.0					4400	050	
COPPER			870 30	30				630 11	798 3.3				1480 6	859 7.5	
UUPPER			30	JU					3.3				Ū	1.2	
NWD - Leon County	1993	1994	1995	1996	1997	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
IRON (FE)	7.3	480	29			28000		23000				9800	18000	22000	
COD, CHEMICAL OXYGEN DEMAND															
CHLORIDE	310	650	540			790		870				420	470	600	
ALKALINITY, TOTAL (CACO3)	860					2200		2500				1300	1500	1800	
SPEC, CONDUCTANCE (FIELD)	2200	5100	4900			6300		6110				4060	4270	4967	
DISSOLVED OXYGEN (FIELD BY PROBE)		2	1			1.07		1.38				1.3	0.86	0.7	
TEMPERATURE (FIELD)															
TURBIDITY, FIELD															
PH, FIELD	6.67	6.68	6.4			7.26		6.72				6.83	6.67	6.96	
AMMONIA (NH3) TOTAL AS N	110		220			3.8		490				190	210	270	
BOD, 5 DAY, 20 DEG C															
TOTAL DISSOLVED SOLIDS TDS, (RES DISS	31.2	2500	2400			2700		2700				1800	1700	1700	
BICARBONATE ION (HCO3) LAB			2000												
SODIUM	270	15	240			680		780				370	400	450	
			-					-					-		

IRON (FE)		4100			10300	10300																
COD, CHEMICAL OXYGEN DEMAND				58.8																		
CHLORIDE		11		270	216	178																
ALKALINITY, TOTAL (CACO3)				312	494	348																
SPEC. CONDUCTANCE (FIELD)				710	1410																	
DISSOLVED OXYGEN (FIELD BY PROBE)																						
TEMPERATURE (FIELD)				25																		
TURBIDITY, FIELD		46																				
PH, FIELD		6.8		7.1	6.63	6.49																
AMMONIA (NH3) TOTAL AS N		0.0		12.9	0.00	5.8																
BOD, 5 DAY, 20 DEG C				0.3		2.0																
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)		500		674	931	729																
		500		014	127	92.3																
SODIUM COPPER		890			121	32.3															+	
		030		0.0051					+												+	
BOD/COD				0.0051																		
SD - Hendry County	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
IRON (FE)	1002	1000	1004	1000	1000	1001	1000	1000	2000	2001	2002	2000	2004	2005	2000	2001	2000	2000	2010	1970	18500	2010
COD, CHEMICAL OXYGEN DEMAND																				1010	10500	
CHLORIDE																				266	11100	
ALKALINITY, TOTAL (CACO3)																				200	994	
ALKALINITT, TOTAL (CACOS)																						
SPEC. CONDUCTANCE (FIELD)																				2230	32700	
DISSOLVED OXYGEN (FIELD BY PROBE)																				1	0.51	
TEMPERATURE (FIELD)											•									23.6	30.5	
TURBIDITY, FIELD																						
PH, FIELD																				6.68	6.68	
AMMONIA (NH3) TOTAL AS N																				14.7	1160	
BOD, 5 DAY, 20 DEG C																						
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)																				1470	20000	
SODIUM																				102	2670	
COPPER																				1.2	14.4	
SD - Highlands County	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
IRON (FE)																			36800	7910	11000	
COD, CHÉMICAL OXYGEN DEMAND																						
CHLORIDE																			1380	1600	1780	
ALKALINITY, TOTAL (CACO3)																			4310		5910	
SPEC, CONDUCTANCE (FIELD)																			11800	13902	14300	
DISSOLVED OXYGEN (FIELD BY PROBE)																			0.04	2.4	2.3	
TEMPERATURE (FIELD)																			25	27.3	25.9	
TURBIDITY, FIELD																			1.1	9.06	2.35	
PH, FIELD																			7.2	8.01	7.46	
AMMONIA (NH3) TOTAL AS N																			815	670	961	
BOD, 5 DAY, 20 DEG C																			0.0			
TOTAL DISSOLVED SOLIDS TDS, (RES DISS)																			5980	6880	7000	
SODIUM																			1070	1360	1710	
COPPER																			2	2	2	
COPPEN																			2	e	<u> </u>	

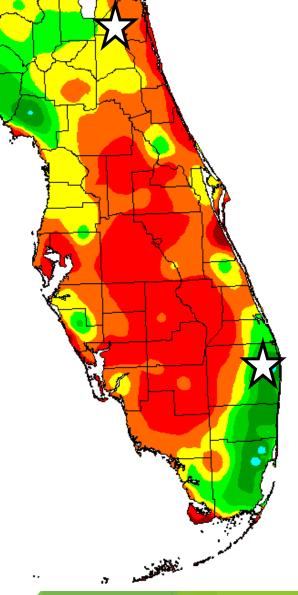
Biggest problem is that there is no discernable pattern or conclusion that can be drawn from this data.

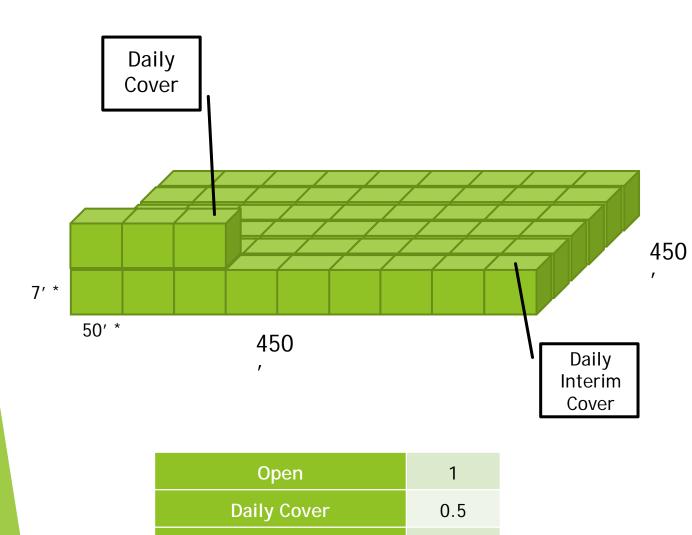
Too many holes, too much missing data, NO QUANTITY data.

What now??

What Now?

- Make "model" landfills
 - ▶ 5, 10 & 20 acres
- Three climate zones based on average monthly precipitation:
 - ▶ West Palm Beach 5.19 in
 - ► Tallahassee 4.93 in
 - ▶ Jacksonville 4.36 in


Average Annual Precipitation


Florida

	Legend ((in inc	hes <u>)</u>
	Under 50		60 to 62
	50 to 52		62 to 64
	52 to 54		64 to 66
	54 to 56		66 to 68
	56 to 58		Above 68
	58 to 60		

Period: 1961-1990

This map is a plot of 1961-1990 annual average precipitation contours from NOAA Cooperative stations and (where appropriate) NRCS SNOTEL stations. Christopher Daly used the PRISM model to generate the gridded estimates from which this map was derived; the modeled grid was approximately 4x4 km latitude/longitude, and was resampled to 2x2 km using a Gaussian filter. Mapping was performed by Jenny Weisburg, Funding was provided by NRCS Water and Climate Center.

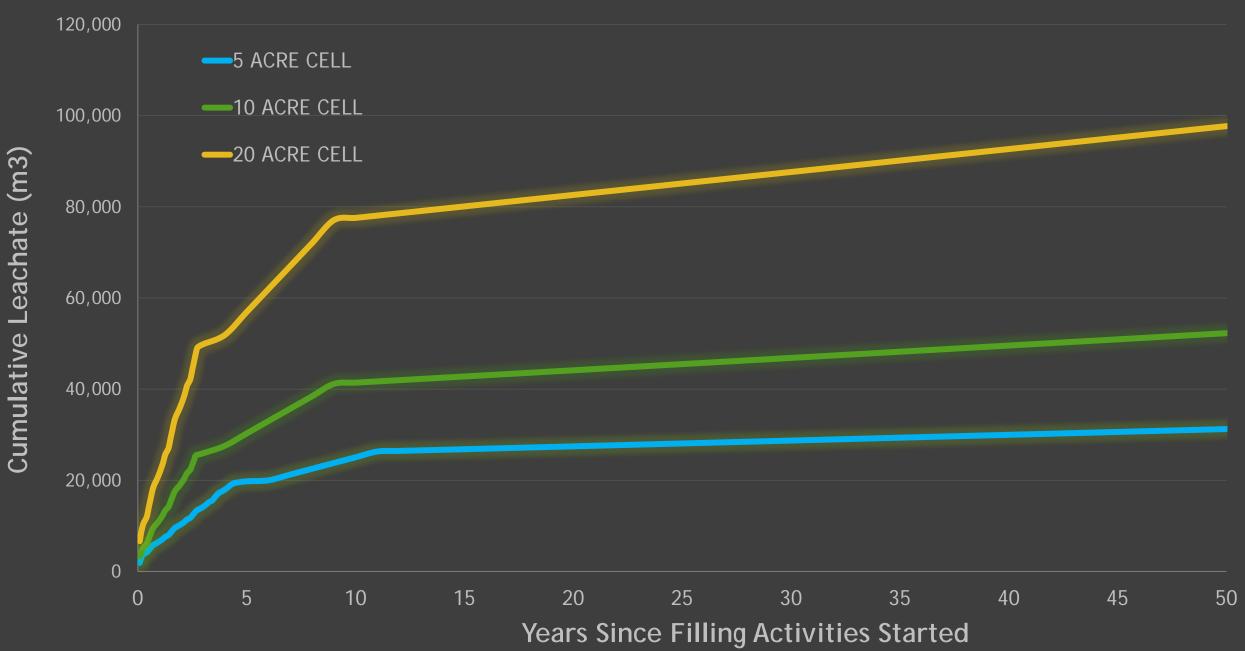
* Block height and width are not to scale, enlarged to clarify structure and placement.

0.1

0

Interim Cover

Final Cover


5 Acre 500 TPD Cell

- While the first layer is built, some of the area is open to rainfall "open area"
- After first layer is down, one 50x50' block of the area is being actively filled – "daily cover" and some is already filled – "daily interim cover"
- When entire cell is finished, a "final cover" is placed on top
- Each cover type has a different rainfall coefficient

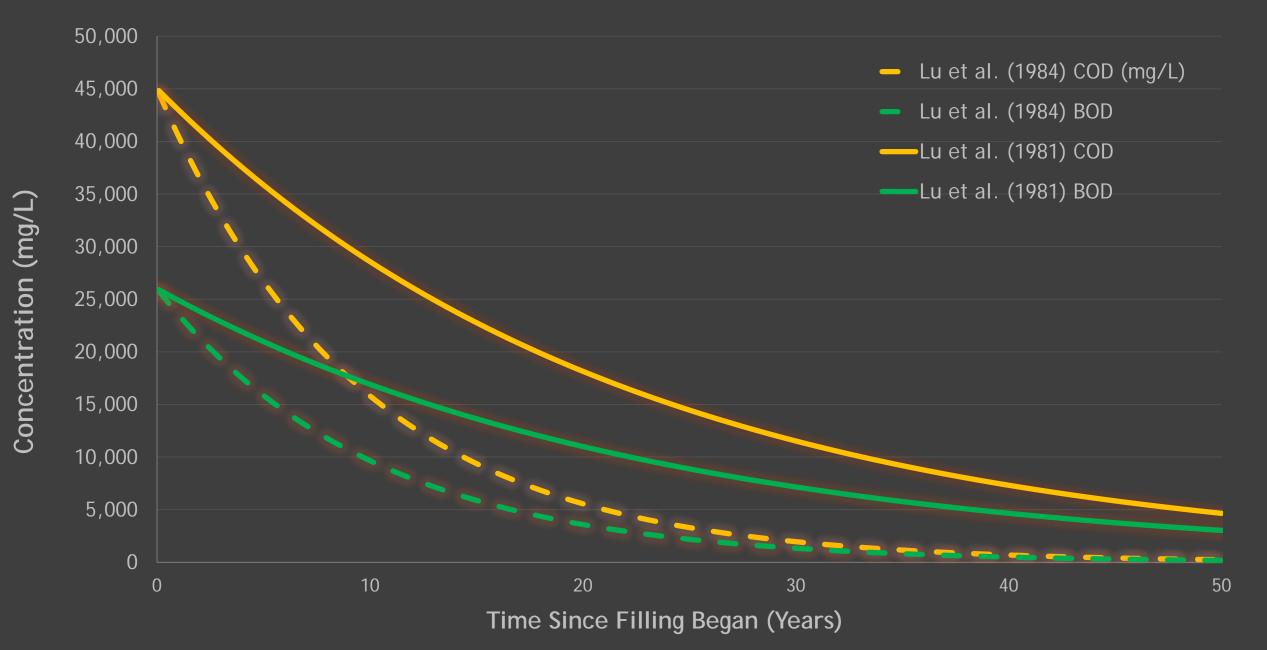
Compiling Data

- Made a database of all relevant information for each cell and location
 - ▶ Rainfall, evaporation, temperature, volume and mass of waste
 - ▶ Time scale is in months during filling activities, then years post-closure
- From these, calculated:
 - ▶ Cumulative volume of leachate (m³)
 - Monthly leachate production (gal/day)
 - Monthly leachate production per unit area (in)
 - COD and BOD concentrations throughout the landfill
 - ▶ Rate of vertical inflow per unit area (in/day) "r"
 - Leachate head on the LF liner based on the calculated $r y_{max}$

Cumulative Leachate in Tallahassee

COD and **BOD** Concentrations

Three models used:


- ▶ Lu et al. (1981): $C = C_0 e^{-kt}$
- ▶ Lu et al. (1984): $C = C_0 10^{-kt}$

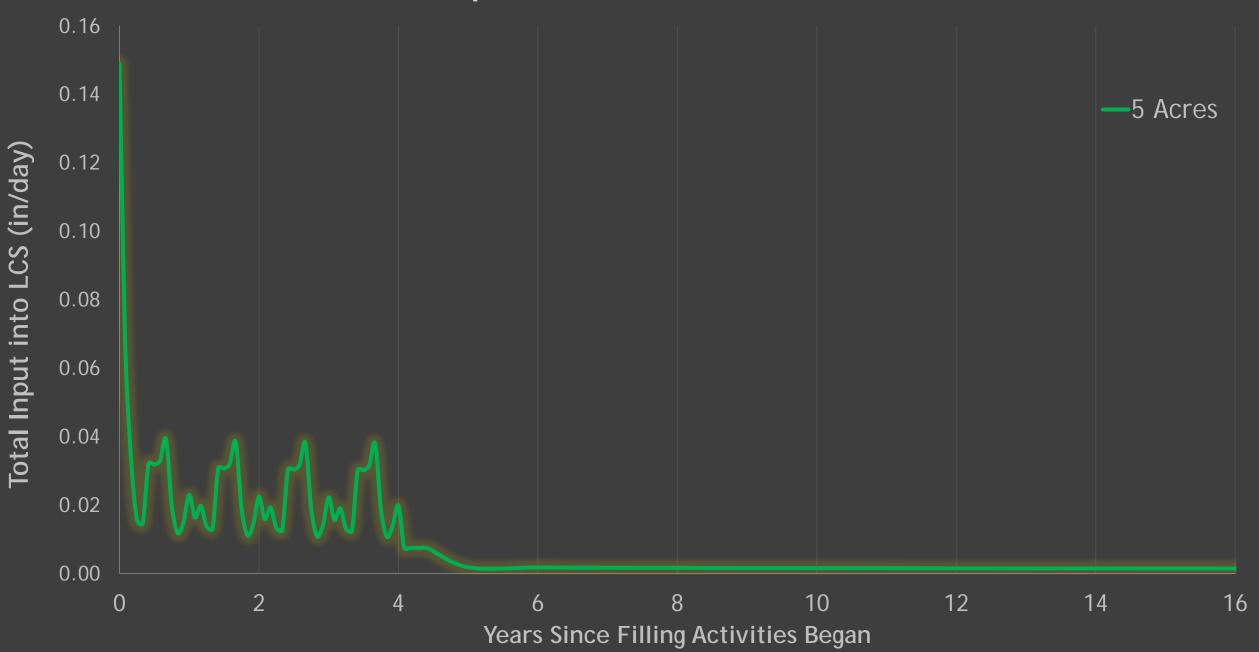
• Wigh et al. (1979):
$$C = C_{max} \frac{e^{-k_1 v} - e^{-k_2 v}}{e^{-k_1 v} max - e^{-k_2 v} max}$$

Lu et al. equations are most commonly used in literature, so we decided to use those for further calculations

C ₀	Max/initial COD concentration
k	First-order reaction rate constant
t	Time
V	Leachate volume
V _{max}	Cumulative leachate volume where C _{max} value occurred
C _{0COD}	45,000
C _{OBOD}	26,000
K _{COD} (yr	0.0454
K _{BOD} (yr	0.043

BOD & COD Concentrations with Time for 5 Acre Cell

Rate of Vertical Inflow per Unit Area


- A measure of how much liquid will actually make its way into the LCS pipes per unit area
- Calculated using:

Monthly leachate per unit arear

+ Vertical squeezing $\rightarrow (0.0013 * t^{0.7}) + (0.03 * \log \frac{t}{t_0})$ =

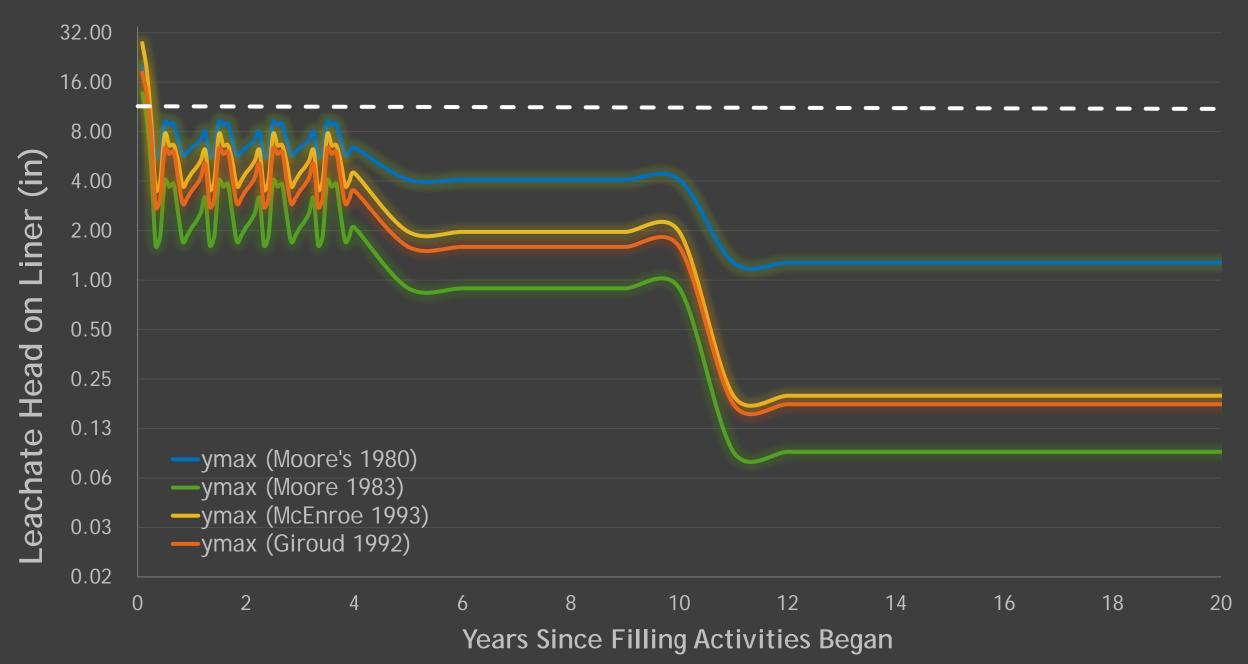
Total input into LCS (in/day/unit area)

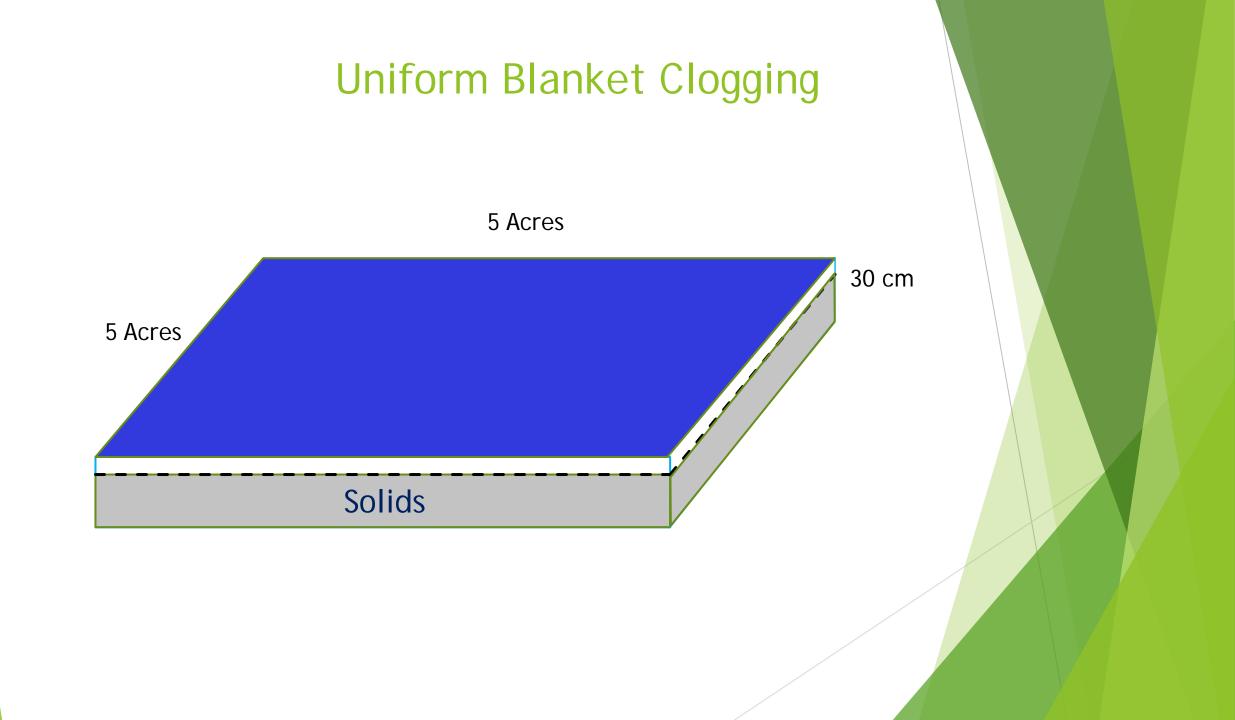
r - Total Input into LCS in Jacksonville

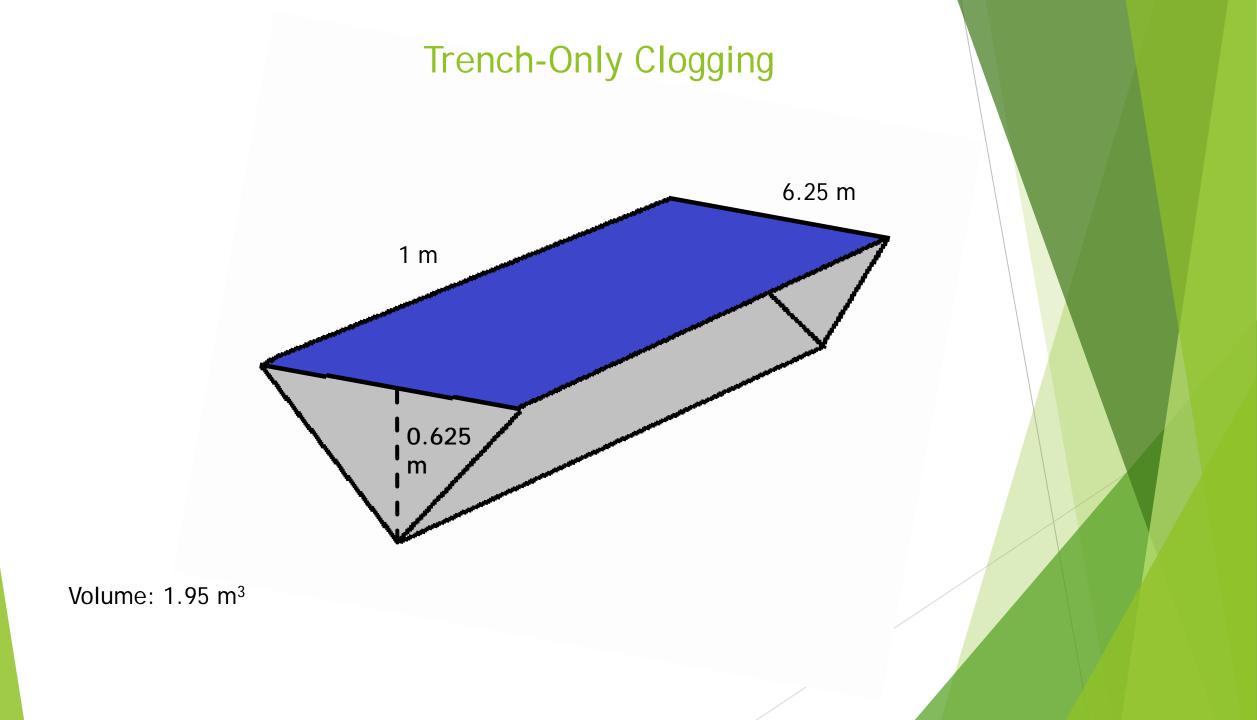
Leachate Head on the Liner Calculations

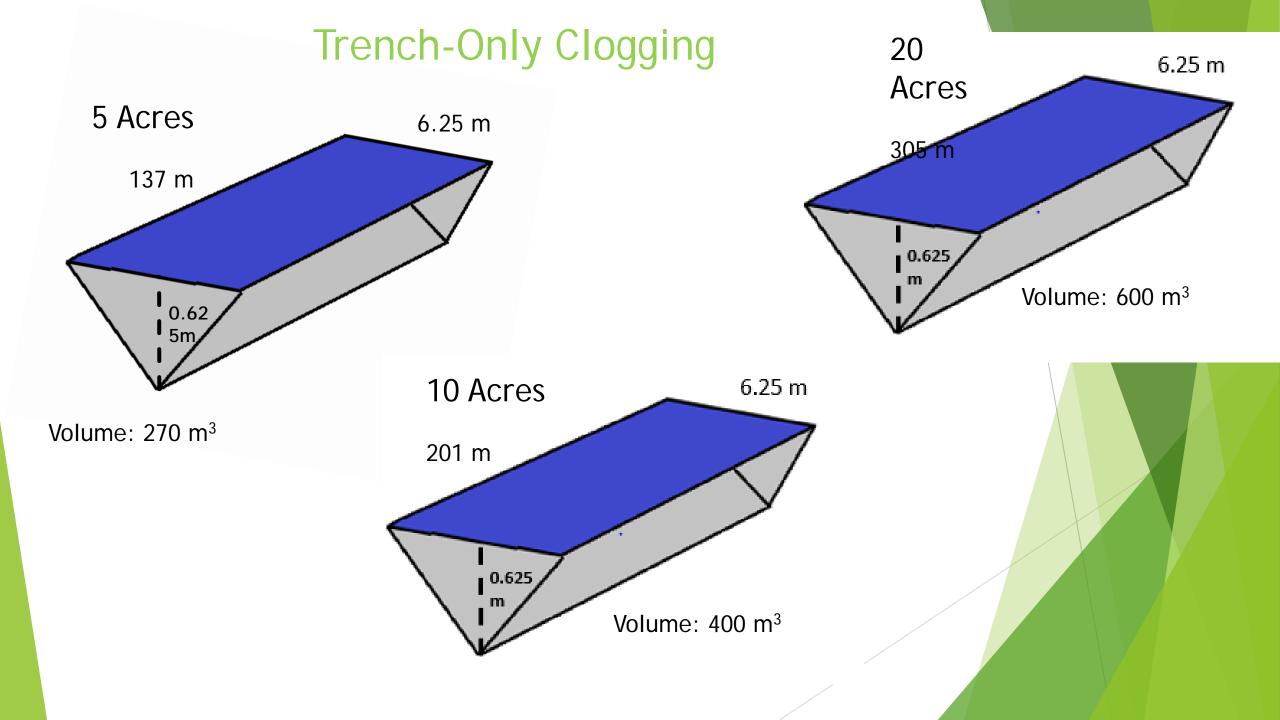
Four models used to calculate leachate head on the liner:

• Moore's (1980):
$$y_{max} = L * \left(\frac{r}{k}\right)^{\frac{1}{2}} \left(\frac{kS^2}{r} + 1 - \frac{kS}{r}\left(S^2 + \frac{r}{k}\right)^{\frac{1}{2}}\right)$$

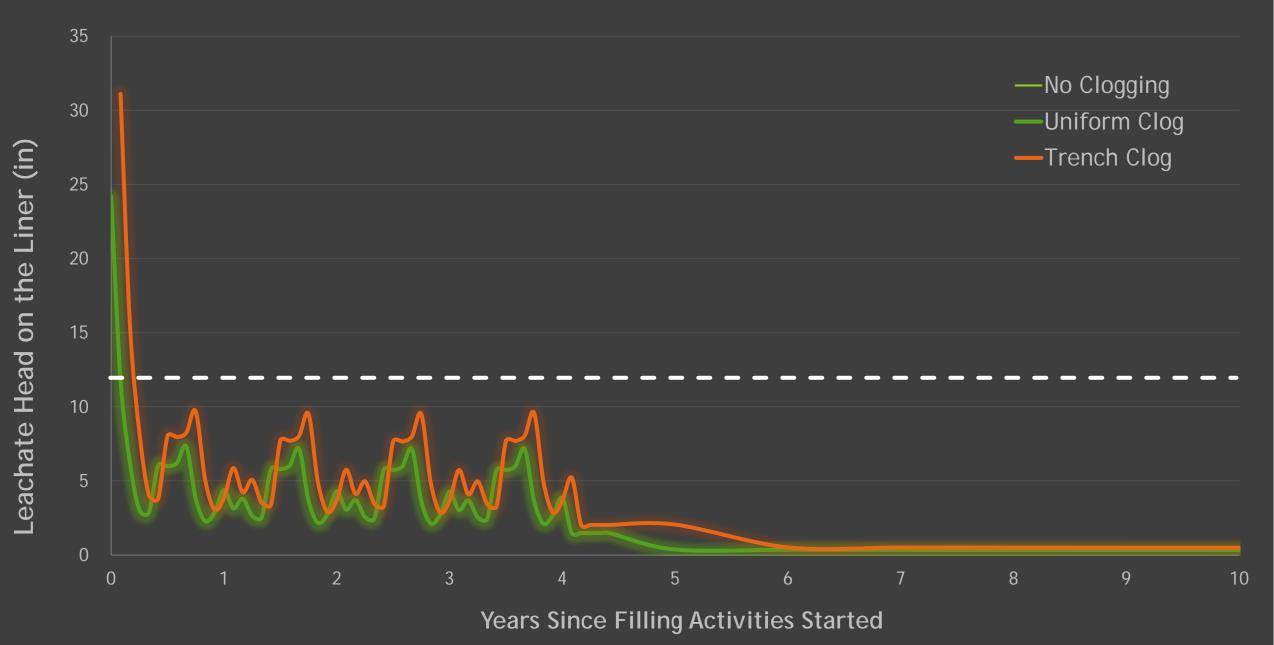

- Moore's (1983): $y_{max} = L * \left(\left(\frac{r}{k} + S^2 \right)^{\frac{1}{2}} S \right)$
- Giroud (1992): $y_{max} = j * L * \left(\left(4 * \frac{r}{k} + S^2 \right)^{\frac{1}{2}} S \right) / (2 * \cos \alpha)$
- McEnroe (1993):
- If R < 1/4,


$$y_{max} = L * S * (R - RS + R^2 S^2)^{\frac{1}{2}} * \left(\frac{\left((1 - A - 2R)(1 + A - 2RS)\right)}{\left((1 + A - 2RS)\right)}\right)^{\frac{1}{2} * A}$$

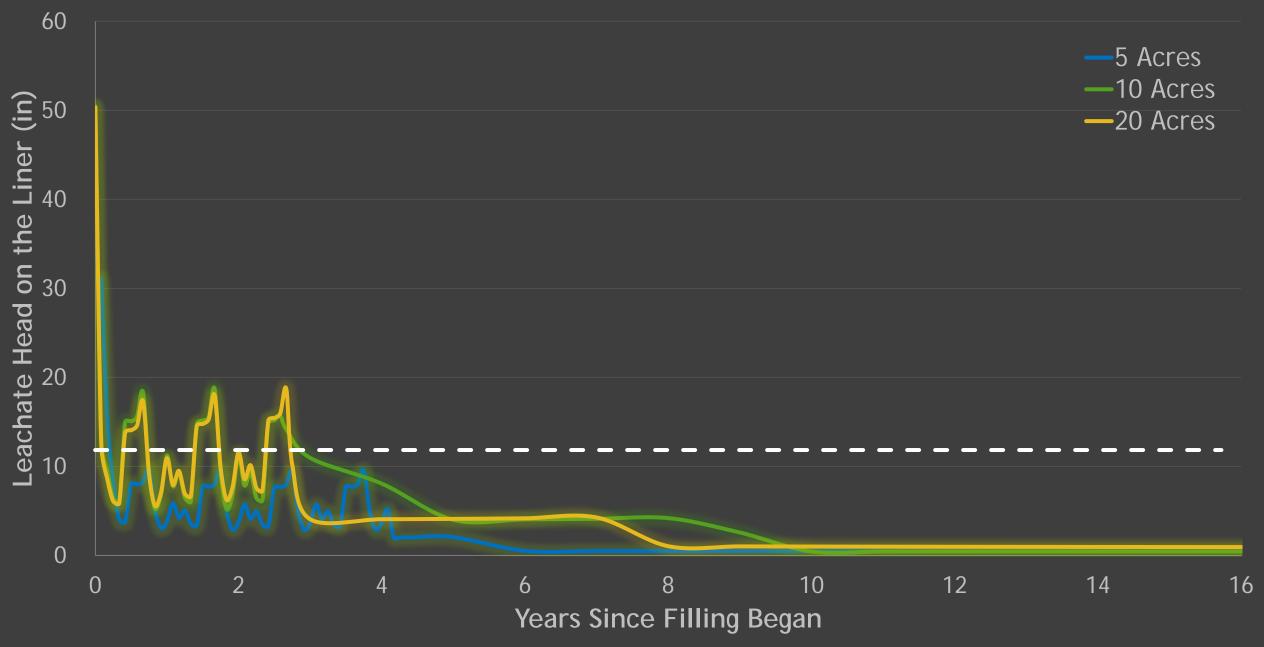

- If R = 1/4,
- ► $y_{max} = L * S * R * \frac{1 2RS}{1 2R} * \exp(((2R * (S 1))/((1 2RS)(1 2R))))$
- If R > 1/4,


•
$$y_{max} = L * S * (R - RS + R^2 S^2)^{\frac{1}{2}} * \exp\left(\left(\frac{1}{B}\right) tan^{-1}\left(\frac{2RS-1}{B}\right) - \left(\frac{1}{B}\right) tan^{-1}\left(\frac{2R-1}{B}\right)\right)$$

Leachate Head on the Liner of 5 Acre Tallahassee Cell


100% MSW Jacksonville

	Time Period	Average r	% of Average Daily Rain
5 Acres	Active	0.024	16%
5 / 61 03	Intermediate	0.003	2%
	Post Closure	0.001	1%
	Time Period	Average r	% of Average Daily Rain
10 Acres	Active	0.041	28%
	Intermediate	0.0193	13%
	Post Closure	0.0015	1%
	Time Period	Average r	% of Average Daily Rain
20 Acres	Active	0.021	14%
	Intermediate	0.0065	4%
	Post Closure	0.0012	1%


50% MSW/50% Ash Jacksonville

	Time Period	Average r	% of Average Daily Rain
5 Acres	Active	0.024	16%
JACIES	Intermediate	0.003	2%
	Post Closure	0.001	1%
	Time Period	Average r	% of Average Daily Rain
10 Acres	Active	0.041	28%
	Intermediate	0.019	13%
	Post Closure	0.001	1%
	Time Period	Average r	% of Average Daily Rain
20 Acres	Active	0.021	14%
	Intermediate	0.0065	4%
	Post Closure	0.0012	1%

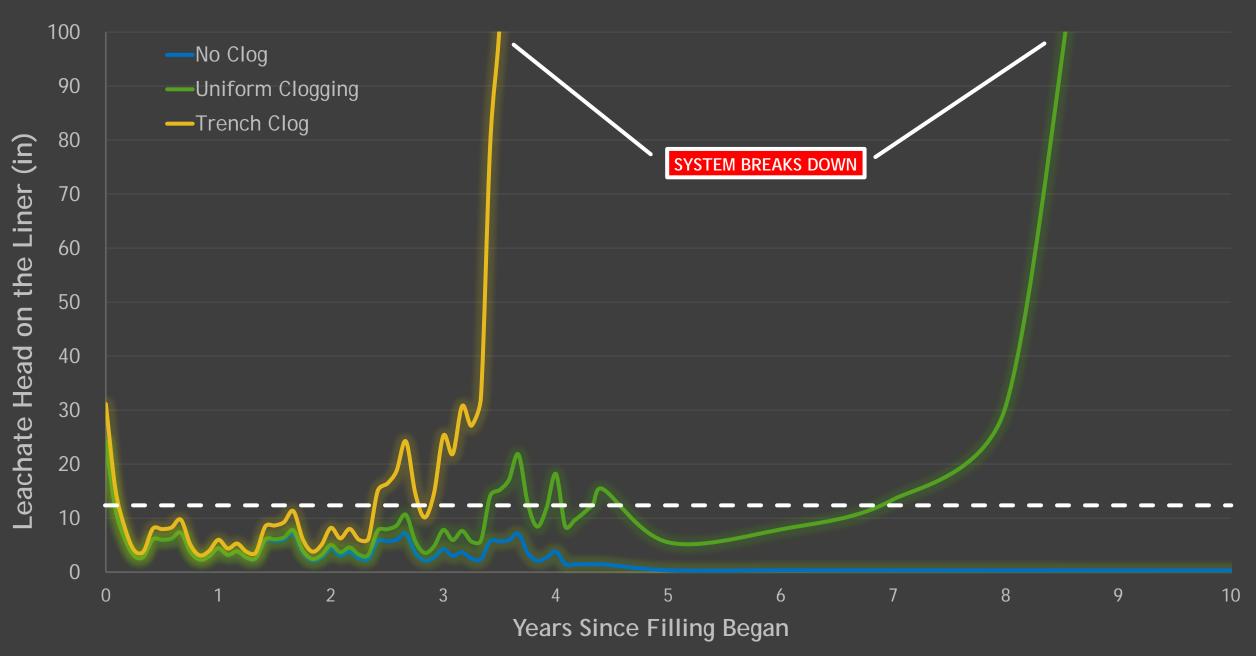
100% MSW Leachate Head on Liner in Jacksonville 5 Acre Cell

100% MSW Leachate Head on Liner in Jacksonville

100% MSW Jacksonville

Clogging Occurrence

5 Acres


Month	Moore 1983	Month	Uniform Clog	Month	Trench Clog
1	24.18	1	24.19	1	31.11
				2	15.53

10 Acres

20 Acres

Month	Moore 1983	Month	Uniform Clog	Month	Trench Clog	Month	Moore 1983	Month	Uniform Clog	Month	Trench Clog
1	39.66	1	39.86	1	50.47	1	38.71	1	38.74	1	50.32
9	13.94	9	13.95	2	12.75	9	13	9	13.01	2	12.46
21	14.21	21	14.24	6	15.00	21	13.48	21	13.52	6	13.80
				7	15.06	33	13.86	33	14.05	7	14.07
				8	15.61					8	14.62
				9	18.32					9	17.31
				18	14.77					18	14.53
				19	15.16					19	14.77
				20	15.53					20	15.30
				21	18.69					21	17.98
				30	14.83					30	15.18
				31	15.19					31	15.44
				32	15.65					32	15.99
				36	14.16					36	18.71

50/50 Leachate Head on Liner in Jacksonville 5 Acre Cell

50% MSW/50% Ash Jacksonville

	5 Acres						10 Acres								20 Acres				
	Moore		Uniform		Tench		Moore		Uniform		Tench		Moore		Uniform		Trench		
Month	1983	Month	Clog	Month	Clog	Month	1983	Month	Clog	Month	Clog	Month	1983	Month	Clog	Month	Clog		
1	24.18	1	24.19	1	31.11	1	39.66	1	39.68	1	50.47	1	38.71	1	38.74	1	50.32		
•	21.10	42	14.16	2	15.53	9	13.94	9	13.99	2	12.75	9	13	9	13.08	2	12.47		
		43	15.20	30	15.07	21	14.21	18	12.14	6	15.00	21 33	13.48	18	12.74	6	13.81		
								19	12.72	7	15.07	33	13.86	19 20	13.49 14.65	7 8	14.09 14.66		
		44	17.13	31	16.37			20	13.35	8	15.64			20	14.05	9	17.41		
		45	21.80	32	18.71			21	16.56	9	18.38			25	15.82	18	17.40		
		46	12.71	33	24.22			30	20.02	18	16.20			26	12.96	19	18.53		
		49	18.19	34	14.63			30	20.02	19	17.01			27	17.00	20	20.26		
		53	12.71	36	14.60									28	14.36	21	25.30		
		60	15.39	37	25.26			32	24.40	20	17.90			29	15.74	22	15.11		
		96	13.46	38	21.91			36	24.41	21	22.19			30	36.44	24	14.16		
		108	30.77	39	30.76			48	22.56	25	15.89			31	43.00	25	23.38		
			154.86	40				60	22.10	27	15.08			32	52.43	26	19.66		
		120			27.11			72	17.18	30	28.81			33 36	72.46	27	26.23		
			1 BREAKS	41	32.28			84	30.23	31	31.97			30 48	53.58 35.13	28 29	22.88 25.86		
		DC	OWN	42	79.34			96	67.78	32	35.92			40 60	66.43	30	59.94		
				43	101.39			108	290.89	36	36.77			72	198.90	31	73.25		
				44	139.64			120	215.94	48	35.68			84	1789.17	32	93.03		
				45	222.83				1 BREAKS	60	38.04			SYSTEM	I BREAKS	33	134.01		
				46	234.47			1. Sec.) WN	72	34.91			D	OWN	36	113.03		
				47	364.31					84	77.75					48	97.95		
				48	5370.52						360.12					60	308.55		
											TEM					72	839.52		
					BREAKS						AKS						BREAKS		
				DO	WN						WN				4	DC	OWN		
										- 00	VVIV								

Significance

- ▶ Instead of using HELP Model "r", landfills can use this method to find "r"
- ► From that, can find their specific landfill's maximum head on leachate (y_{max}) at every time increment for the duration of its lifetime
- Can plan accordingly when to flush the system
 - Suggestion: Once after completion of filling, then as necessary