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Abstract 

MODELING LEACHATE BOD AND COD USING LAB-SCALE REACTOR LANDFILLS 

AND MULTIPLE LINEAR REGRESSION ANALYSIS 

Said Altouqi, Ph.D. 

The University of Texas at Arlington, 2012 

Supervising Professors: Melanie Sattler and Sahadat Hossain 

The increasing production of municipal solid waste is a direct consequence of the 

continuous growth of the world’s population and economy. This fact makes protecting the 

environment against contamination by different kinds of waste a challenging job for engineers 

and decision makers. Conventional landfilling practices have sometimes failed to protect fresh 

water resources against leachate contamination as well as the atmosphere against greenhouse 

gases such as carbon dioxide and methane. Many developed countries have already taken 

serious steps toward moving to properly engineered, environmental friendly landfills. 

Landfill leachate contains organic and inorganic pollutants that have been extensively 

studied in the last four decades. Biochemical oxygen demand (BOD) and chemical oxygen 

demand (COD) are the most widely used indicators of leachate organic pollution. These two 

parameters are monitored regularly during the process of leachate treatment. They can also be 

used to recognize the solid waste stabilization stage in landfills. Understanding the behavior of 

BOD and COD throughout the life of a landfill via mathematical models would help in predicting 

the future extent of leachate organic pollution and, hence, the most efficient way of operating 

the leachate treatment facility. The main objective of this study was to develop two 

mathematical relationships for calculating the exponential decay rate constants (k values) for 

leachate BOD and COD in terms of rainfall rate, temperature and waste composition. 
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Twenty-seven lab-scale anaerobic reactor landfills were designed and operated under 

three temperatures (70, 85, and 100 °F) and three rainfall rates (2, 6, and 12 mm/day). The 

reactors were filled with various proportions of five waste components: food, paper, yard, textile, 

and inert inorganics. The range of temperatures and rainfall rates were chosen to include 

average rates for most locations worldwide, with the exception of deserts. Leachate was 

collected from these reactors and analyzed for BOD and COD content on a biweekly basis. The 

two models were developed using multiple linear regression analysis. 

The peak BOD concentrations in all the reactors ranged between 856 and 46,134 mg/L 

and peak COD concentrations were between 2,458 and 64,032 mg/L. Leachate from the 85   

reactors showed higher BOD and COD content than other reactors with the same waste 

composition but different temperatures. The 2-mm/day reactors showed longer time (180-200 

days) in reaching minimum or stable BOD and COD concentrations and BOD:COD ratio than all 

other reactors. Low moisture content in those reactors led to slow waste stabilization rates. 

Food waste reactors produced the highest BOD (46,134 mg/L) and COD (64,032 mg/L) 

leachate and textile waste produced the lowest (BODmax=8,960 mg/L and CODmax= 16,054 

mg/L).  

The two models developed in this study show that increasing rainfall rate and 

temperature leads to higher BOD and COD content in leachate, which translates into faster 

waste decomposition. The kCOD model suggests that only paper and textile are the types of 

refuse that contribute to shaping leachate’s COD concentration profile. Paper, yard, and food 

waste components were found to be significant in the kBOD model. The TP interaction term in 

both models suggests that paper waste decomposes faster at higher temperatures. In future 

work, the two models will be validated using field data.  
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Chapter 1 

Introduction 

1.1 Background 

A direct result of a growing population and economy of any country is growing municipal 

solid waste (MSW) production. The world produced 2.02 billion tons of MSW in 2006, which had 

increased 7% since 2003 (UNEP, 2011). The US Environmental Protection Agency collected 

data on MSW generation rates in the US from 1960 to 2010 (Figure 1-1). The US generated 

250 million tons of MSW in 2010, 100 million tons more than it did in 1980 (EPA, 2011). This 

massive increase in the amount of generated waste makes the design of a feasible, 

environmental friendly treatment processes more challenging for the people working in the 

waste management field, not to mention the subsequent increase of the footprint of solid waste 

dumping sites. Many countries are currently moving from simple, unregulated landfills that have 

no leachate collection systems, no gas collection system, and no liners to engineered landfills. 

Landfill leachate is the liquid that drains out of landfills and originates from rain, melting 

snow, and/or the waste itself. Leachate can be a threat to the environment, especially to ground 

and surface waters (Figure 1-2), for decades and even centuries after landfill closure 

(Johannessen, 1999). Regulations in the US strictly require treatment of leachate before it can 

be discharged into reservoirs. Treatment of leachate is not an easy task due to the complexity 

of its constituents and the wide variation of its concentration, which depends on the type of 

waste, weather conditions, and landfill age.  

 



 2 

 

Figure 1-1 Municipal Solid Waste Generation Rates in the US from 1960 to 2010 (EPA, 2011) 

 

Figure 1-2 Cross-Section of Leachate Migration from Landfill to Groundwater Table (EPA, 1997) 
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1.2 Research Justification 

Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are the most 

widely used indicators of leachate organic pollution. These two parameters are monitored 

regularly during the process of leachate treatment. They can also be used to recognize the solid 

waste stabilization stage in landfills (discussed in Chapter 2). Understanding the behavior of 

these two indicators versus the age of landfill via mathematical models would help in predicting 

the future extent of leachate organic pollution and, hence, the most efficient way of operating 

the leachate treatment facility. This is where good formulas for predicting the leachate’s BOD 

and COD content would be useful. However, previous studies have been based on data from a 

single landfill or from regionally specific landfills. The few attempts to model leachate 

quality/characteristics using statistical techniques or software have also focused on a single 

landfill or few regional landfills. This study uses a comprehensive lab-scale reactor design (27 

reactors) that covers wide ranges of temperatures, rainfall rates, and waste components, the 

major factors affecting leachate quality.  

1.3 Objectives 

The objectives of this study are: 

1- To develop a relationship to predict the value of the first-order reaction rate constant (kBOD) of 

leachate Biochemical Oxygen Demand (BOD) as a function of waste fractions (yard, food, 

paper, and textile), rainfall rate, and temperature. A 27-set of lab scale landfill bioreactors and 

statistical methods for data analysis will be used to achieve this objective.  

2- To develop a second relationship for calculating the first-order reaction rate constant (kCOD) of 

leachate’s Chemical Oxygen Demand (COD) using a method similar to that for objective 1. 
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1.4 Report Organization 

This dissertation is divided into five chapters. 

Chapter One (Introduction) of this thesis gives general background information about 

the importance of the topic and research justification. It also lists the objectives of the study. 

Chapter Two (Background and Literature Review) reviews the literature and published reports 

related to the main subject of the study. That includes studies related to landfill leachate 

monitoring and mathematical modeling of leachate characteristics. Chapter Three 

(Methodology) is a detailed description of the methods used to achieve the study’s objectives. 

This chapter includes experimental design, reactor setup, and data analysis and model building 

procedure. Chapter Four (Discussion of Results and Regression Modeling) discusses the 

results of BOD and COD laboratory analysis including plots of BOD:COD ratio versus time. It 

also walks the reader through the multiple linear regression (MLR) model building process. 

Chapter Five (Conclusions and Recommendations) lists the main conclusions of this study and 

gives recommendations to the potential future researchers on the best ways to improve the 

models in terms of data collection and laboratory procedures.  
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Chapter 2 

Background and Literature Review 

2.1 Introduction 

Historically, landfilling has been the most common practice of managing solid waste 

(Christensen, 2011). Landfills have developed throughout the years from simple dump yards to 

highly engineered systems in some countries. Nevertheless, much work remains to be done 

because of the many potential impacts landfills can cause to the surrounding environment if not 

properly designed and/or managed. Also, even if an advanced landfill is operating well with up-

to-date technologies, the waste in this landfill will remain a constant potential source of 

contamination, even after the landfill closure. This is why engineers and experts in the waste 

management field are continuously working to develop new technologies that will turn landfills 

into more sustainable systems. 

Some of the known environmental impacts of landfills include contamination of 

groundwater and surface water resources by landfill leachate, and contribution to climate 

change caused by methane gas (CH4, one of the landfills’ primary gas emissions). Landfills 

have been found to release a large number of chemicals into the atmosphere (Ludwig et al., 

2002).  

2.2  Landfilling 

The practice of landfilling has been the most common management method for solid 

waste (Christensen, 2011).  Throughout the years, landfills have developed from mere dump 

yards to technologically advanced waste management facilities.  Because the landfill is still 

considered an accumulation of waste in the environment, there has been a strong need for a 

process-based landfill operation technology to replace the traditional waste storage concept 

(Warith, 2002; Christensen, 2011). An advanced knowledge of the process by which solid waste 
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decomposes in landfills is essential to achieve the intended level of waste stabilization. The 

biodegradation of organic matter is the dominant process occurring in the landfill and it controls 

the chemical environment inside it; hence, it should be well understood and properly controlled 

(Reinhart & Townsend, 1998; Christensen, 2011). Adding moisture to the waste keeps it wet 

and enhances the anaerobic microbial reactions and hence leads to faster waste degradation 

and increased methane gas generation. The forms of moisture that are typically added to the 

waste are water, leachate (recirculated), or other liquids. Landfills operated with moisture 

addition are termed bioreactor landfills, or enhanced leachate recirculation landfills. 

Organic solid waste in landfills undergoes many phases of decomposition before it is 

completely stabilized. Figure 2-1 shows these phases in terms of landfill leachate strength and 

gas composition. The phases are similar to the ones in anaerobic digesters or any anaerobic 

microbiological reaction in general. They can be summarized as follows (Rowe, 1995; Reinhart 

& Townsend, 1998; Christensen, 2011): 

1- Aerobic or Adjustment Phase: Immediately after placing the top soil cover on the waste, 

aerobic microbial reactions (oxidation) take place for a few days due to the presence of oxygen 

gas in the waste voids. 

2- Acidic phase: After all oxygen has been used up, anaerobic bacteria start the hydrolysis and 

fermentation of organic compounds (carbohydrates, proteins, and fats) and convert them into 

volatile fatty acids (VFA), carbon dioxide (CO2), and hydrogen (H2). Then, acetogenic bacteria 

convert VFAs into acetic acid and other simpler acids. During this stage of decomposition, 

leachate becomes acidic (pH < 6, i.e. contains high concentrations of VFA), has high BOD and 

COD concentrations, high BOD:COD ratio, and has high metal and soluble inorganic content. 

This phase can last from a few days to a few months depending on the landfill operating 

conditions (moisture content, pH control, temperature, fractions of organic waste, etc.). 



 7 

3- Methane production: Methanogens/methanogenic bacteria (strictly anaerobic bacteria) start, 

in this phase, converting acetic acid into CH4 and CO2. To a lesser extent, methane is also 

formed from CO2 and H2. Subsequently, this reaction reduces the oxygen demand, represented 

by BOD and COD, of the remaining landfill waste (see Figure 2-1). Metals are precipitated (due 

to high pH) and accumulated in the solid phase.  

4- Maturation Phase: The organic waste or available substrate becomes limited and gas 

production drops. Concentrations of leachate parameters (such as BOD and COD) decrease. 

Void size increases in the landfill waste, which will eventually permit oxygen and other 

atmospheric gases to infiltrate and disrupt the anaerobic reactions.  

 

Figure 2-1 Stages of Waste Decomposition in Landfills (Zanetti, 2008). 

2.3 Importance of Leachate Characterization and Management 

Many field studies have indicated that landfill leachate represents a great threat to the 

environment, especially groundwater and surface water resources, even if the leachate is 

generated from small municipal landfills (Qasim & Chiang, 1994). Leachate consists of material 
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removed from waste mass via leaching of soluble substances and soluble products of chemical 

and biological transformation within landfill waste (Reinhart & Townsend, 1998). Waste material 

could also be washed out to travel/migrate with leachate flow in a landfill. Today, many federal 

and state regulations require treatment of landfill leachate to reduce its strength before 

discharging it into surface waters (Qasim & Chiang, 1994; Senior, 1995). Treatment of leachate 

can cost up to 67% of the total landfilling cost, due to the complexity of leachate constituents 

(Johannessen, 1999). For this reason, it is very crucial to realize that a proper design, operation 

and management plan for the leachate can highly reduce its quantity and strength and, 

therefore, reduce threats to the environment as well as the treatment cost.  

 Many research studies, at both field-scale and lab-scale, have been carried out on 

landfill leachate quantity and quality characterization (Farquhar, 1989; Grellier et al., 2006; Aziz 

et al., 2010; Fellner & Brunner, 2010). A common objective of these studies was to investigate 

the influence of landfill conditions (temperature, moisture content, type of waste, age of landfill) 

on leachate quality/strength. However, most studies have been based on data from a single 

landfill or from regionally specific landfills. The few attempts to model leachate 

quality/characteristics using statistical techniques or software have also focused on a single 

landfill or few regional landfills. 

There is a long list of organic compounds in particular that can be found in leachate. 

The list includes organic acids, aromatic compounds (fuel oils), chlorinated aromatic 

compounds, ketones, alcohols, pesticides, and others (Reinhart & Townsend, 1998). Volatile 

organic acids (VOAs) are generally the dominant (highest concentration) class of organic 

compounds found in leachates. These VOAs are byproducts of the decomposition of 

carbohydrates, lipids, and proteins. 

The wide variety of organics in leachate can be quantified by the lumped parameters: 

chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Leachate COD 

measures all oxidizable matter in leachate (including organics and other compounds), while 
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BOD measures the biodegradable organic mass (El-Fadel et al., 2002). BOD is the most widely 

used indicator of organic pollution in wastewater and surface water (Metcalf & Eddy, 2004). This 

study focused on the organic content of leachate that is governed by BOD and COD.   

Today, many leachate treatment plants are designed to treat both biodegradable and 

non-biodegradable matter in leachate (Christensen, 2011). Therefore, it would help these plants’ 

engineers and operators to have a general idea about the expected behavior of leachate in 

terms of BOD and COD with time in order to meet the effluent concentration standards. This is 

where good formulas for predicting the leachate’s BOD and COD content would be useful.   

The BOD and COD values of leachate vary greatly from one region to another due to 

climate conditions, type of MSW, and landfill age (Chain, 1977; Chen, 1996; Al-Yaqout & 

Hamoda, 2003; Fan et al., 2006). Table 1 shows some of those variations in several countries. 

Table 2-1 Leachate BOD and COD Values from Landfills in Different Regions 

Study BOD (mg/L) COD (mg/L) Country 

Fan et al. (2006) 12 - 492 320 – 4,340 Taiwan 

Al-Yaqout and Hamoda (2003) 30 - 600 158 – 9,400 Kuwait 

Reinhart and Grosh (1998) 13,400 400 – 40,000 USA 

Pohland et al. (1985) 4 – 57,700 31 – 71,700 Germany 

 

The values in this table were obtained from long-term leachate monitoring programs, 

which are essential for these parameters not to be over/underestimated. The long-term 

monitoring programs are also important in determining the appropriate leachate treatment 

processes (Fan et al., 2006). For example, if the organic content (BOD and COD) of leachate 

were low, treatment via biological processes would not be efficient.   
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The BOD/COD ratio represents the proportion of biodegradable organics in leachate. 

This ratio is normally higher in young landfills (fresh waste) than it is in older or stable ones. Fan 

et al. (2006) calculated this ratio for leachate from three landfills in Taiwan, of age ranging from 

10 to 17 years. The BOD/COD ratios for these landfills ranged from 0.05 to 0.08 (very low). The 

study concluded that those landfills had reached a stable status and were not suitable for 

biological treatment processes. In this study, BOD/COD ratio was calculated for all reactors to 

determine whether the biodegradable portion of waste was still available, hence, whether BOD 

and COD analysis for leachate should continue. Overall, knowing this ratio helped in 

determining the waste stabilization stage in the reactors.   

There is significant evidence from many studies to suggest that the strength of leachate 

declines with time (Pohland et al., 1985; Qasim & Chiang, 1994; Chen, 1996; Reinhart & 

Townsend, 1998). The cause of this decrease could be biological decomposition of waste 

and/or dilution effects.  

2.4 Factors Affecting Leachate Quality 

Leachate strength and composition vary according to the landfill waste stabilization 

phase. For example, leachate in the acid phase will have low pH and high BOD and COD 

values, and the opposite is true for the methanogenic phase (Christensen, 2011). There are 

many factors than can affect the leachate quality, including waste moisture content/seasonal 

variation of rainfall rates, landfill age, composition of waste, temperature, pH, available O2 in the 

landfill, and other operational factors (Lu et al., 1985; Qasim & Chiang, 1994; Reinhart & Al-

Yousfi, 1996; Christensen, 2011).   

2.4.1 Waste Moisture Content 

 Moisture content of landfill waste plays a very significant role in controlling the quantity 

and strength of landfill leachate as well as waste stabilization (Qasim & Chiang, 1994). Chen 

(1996) studied the effect of rainfall rates on leachate strength in 9 different landfills in Taiwan 
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over a 4.5 years period of time. The researcher reported an overall decrease in leachate 

constituents/strength as rainfall rates increased.  

 The rate which water infiltrates into waste depends on many factors like type of landfill 

cover, rainfall rate, evapotranspiration rate, and field capacity of the landfill (Palmisano & Barlaz, 

1996). Addition of water to landfills has been reported by many studies to have a stimulating 

effect on the process of methane production in landfills (Barlaz et al., 1990). Water within a 

landfill has several functions such as (James & Arnold, 1991):  

a- transporting nutrients;  

b- acting as a reactant in hydrolysis reactions;  

c- working as a pH buffer;  

d- dissolving substances for easier metabolism; 

e- diluting reaction inhibiting compounds; and 

f- preparing waste surfaces area for microbes’ attack.    

 The functions of water listed above would tend to facilitate microbial decomposition of 

waste. However, rates of fluid addition that are too high can limit microbial activity by flushing 

microbes and nutrients out of the landfill (Armstrong & Rowe, 1999). In Addition, application of 

water in high rates, especially in the early life of a landfill, has been reported to remove most of 

the waste contaminants (Qasim & Chiang, 1994). Accordingly, some researchers have 

attributed low rates of waste stabilization and methane production to low moisture content within 

the landfill, and other researchers have reported low rates of waste stabilization and methane 

production to high moisture content (Sulfita et al., 1992; Miller et al., 1994). Some researcher 

like Barlaz et al. (1990) and Chen (1974) recommended minimum moisture content of 25% and 

40-70% as an optimum range.   
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2.4.2 Landfill Age 

 Many studies described the quality of leachate as a function of time because organic 

waste continues to decompose/stabilize as a landfill ages (Qasim & Chiang, 1994; McBean et 

al., 1995). Also, most leachate organic indicators (e.g., BOD, COD, and bacterial populations) 

have shown peak concentrations in the initial stages (2-3 years) of a landfill and start to 

decrease gradually in the following years until they level off after 10 years of landfilling (Chen, 

1996; Reinhart & Grosh, 1998). Kulikowska and Klimiuk (2008) observed a similar trend in 

leachate from a landfill in Poland (Figure 2-2). 

 

Figure 2-2 COD vs. Time in Landfill Leachate in Poland (Kulikowska & Klimiuk, 2008). 

 Warith (2002) compared COD and BOD trends versus time between leachate collected 

from laboratory cells operated as landfills and another from actual landfill in Ontario, Canada. 

Those two organic pollution indicators from the lab-scale landfills peaked in the first 2-5 weeks 

and then showed a declining trend until 17
th
 week of experiments (see Figure 2-3). In contrast, 

BOD and COD of the actual landfill showed a decreasing trend over 8 years.   
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(a) 

 

(b) 

Figure 2-3 (a) BOD and (b) COD vs. Time Curves of Leachate from Lab-Scale Landfill (Warith, 

2002) 
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 Gau et al. (1991) reported that microbiological degradation of organic waste starts when 

wastes are disposed of in the landfill, which results in generating leachate with high 

concentration of volatile fatty acids (easily broken compounds). The study also showed that the 

level of these compounds in leachate declined as the landfill ages and that high molecular 

weight compounds were found instead. Chen (1996) investigated the relationship between 

leachate characteristics from 9 landfills in Taiwan and landfill age. Figure 2-4 shows BOD/COD 

ratios of leachate from those landfills against landfill age.   

 

Figure 2-4 Relationship between BOD/COD Ratio and Landfill Age (Chen, 1996) 

The study suggests that this ratio peaks within the first 1.5 years of the landfill age 

because of the rapid biodegradability of fresh waste. After this period, BOD/COD ratio declines 

sharply as the availability of biodegradable organic compounds becomes limited. This 

conclusion is helpful for selecting the type of leachate treatment processes. In this case, 

biological processes would be very effective only in the first one and a half years of the landfill 
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age. Leachate inorganic constituents decrease steadily in their concentrations because of the 

washout effect caused by infiltrating water (Lu et al., 1981; Qasim & Chiang, 1994).  

2.4.3 Composition of Waste 

 Factors that affect the generation and composition of municipal solid waste are 

population, socioeconomic status of people, season, location, and methods of collecting and 

disposing waste (Reinhart & Townsend, 1998; El-Fadel et al., 2002). In a report by the U.S. 

EPA on municipal solid waste generation and composition in the Unites States in 2007, it was 

reported that paper and paperboard wastes made up about 32.7% (by weight) of the total MSW 

generated in the U.S. (EPA, 2008); Figure 2-5).  

 

Figure 2-5 Materials Generated in MSW, 2007 (254 Million Tons before Recycling) (EPA, 2008) 
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In Lebanon, 62% of MSW generated in the whole country is food waste (El-Fadel et al.). 

Despite these classifications of MSW by the different studies, there is still a great variability in 

the characteristics and constituents of municipal solid waste from one landfill to another. 

Composition of MSW has a large impact on the level of biological activity in landfills (Qasim & 

Chiang, 1994; Gau & Chow, 1998). The biological activity is enhanced with more biodegradable 

organic fraction of the waste such as food, plant, and animal wastes (Rowe, 1995). In addition 

to the organic compounds in leachate, there are also inorganic constituents, which mainly come 

from ash and construction wastes as well as landfill soil (Pohland et al., 1985). Therefore, the 

dominant waste type in a certain region affects leachate quantity and/or quality. For example, 

paper is primarily made of lignin, which resists anaerobic biological reactions, the main 

mechanism of waste degradation within a landfill (Reinhart & Grosh, 1998). Hence, paper waste 

may slow down the waste stabilization process. Very few researchers have tried to study the 

rate and extent of decomposition of individual waste components in landfills (Eleazer et al., 

1997; Barlaz, 2006).      

 To the best of the author’s knowledge, no research study in the literature has 

investigated the effect of each type of major municipal solid wastes on leachate quality. In this 

study, the behavior of leachate organic constituents (represented by BOD and COD) was 

studied in terms of paper, food, yard, textile, and inorganic wastes as well as rainfall rate and 

temperature (see Chapter 3 for more details). 

2.4.4 Temperature and Available Oxygen 

 Ambient temperature largely affects leachate quality and its variations from one season 

to another are uncontrollable (Lu et al., 1985). Temperature is a major factor in microbial growth 

and chemical reactions in landfills. Waste degradation rate increases with temperature 

(Reinhart & Townsend, 1998). Two processes control temperature in landfills: heat lost to soil 

and atmosphere and heat produced during biodegradation reactions (McBean et al., 1995; 

Reinhart & Grosh, 1998). Each microbe functions in an optimum temperature, and its growth is 
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disrupted with that going higher or lower (Senior, 1995). That is because enzymes deactivate 

and cell walls are damaged when a microbe experiences a deviation from its optimum 

temperature (Senior, 1995).  

The amount of O2 available to microorganisms within a landfill determines whether 

aerobic or anaerobic waste decomposition will dominate. Chemical compounds produced from 

aerobic reactions differ largely from the ones produced as a result of anaerobic reactions. 

Hence, leachate quality is affected by the type of reaction taking place (McBean et al., 1995). 

While aerobic microbes decompose organic matter into water, carbon dioxide, secondary 

organics, and heat; anaerobic microbes produce organic acids, hydrogen, ammonia, methane 

gas, carbon dioxide, and water (McBean et al., 1995). As mentioned in the previous section, 

aerobic reactions in landfills occur typically in the initial stage of landfilling until trapped O2 within 

waste is depleted and an anaerobic environment develops. Aerobic decomposition can still take 

place after this stage in the top landfill layer as a result of interaction with the atmosphere 

(McBean et al., 1995). 

2.4.5 pH  

As mentioned earlier, the anaerobic decomposition of MSW in landfills goes through a 

process of four consecutive phases; hydrolysis, acidogenesis (VFA formation), acetogenesis 

(conversion of VFAs into acetic acid), and finally methane formation.  There are several 

bacterial groups involved in this process and each group favors certain environmental 

conditions such as pH, temperature, and moisture content. In a balanced situation, VFAs are 

produced the acidogenesis phase and converted into acetic acid in the acetogenesis phase at 

the same rate (Jung et al., 2000; Ponsá et al., 2008). When acidogenesis is much faster than 

acetogenesis, VFAs would build-up in the reactor and pH would drop sharply. This process 

imbalance could cause a reactor to fail because highly acidic environment has been reported to 

limit or even stop bacterial growth (Pohland et al., 1985; Ponsá et al., 2008). 
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2.4.6 Operational Factors 

In a typical landfill, waste is usually placed in different cells of different age. The waste 

is compacted in those cells in multiple layers. The age of each cell, degree of compaction, and 

whether the waste is shredded before being landfilled; all play an important role in the quality of 

leachate that is collected from the landfill (Armstrong & Rowe, 1999). For example, when fresh 

waste is placed in an old cell and on top of well-decomposed waste, the concentration of 

leachate contaminants would jump after being stable at minimum levels. Also, the degree of 

compaction determines the porosity of waste inside the landfill. In a porous landfill, water moves 

faster through the waste and has less contact time with waste constituents, and vice versa.  

Contact time between water and waste is important in dissolving waste contaminants and 

preparing them for microbial attack. Depth of landfill cells is also significant in leachate quality. 

Deeper cells allow longer contact time between water and waste and, therefore, stronger or 

more concentrated leachate (Qasim & Chiang, 1994).  Shredding waste means increasing its 

surface area for more water contact and microbial decomposition. Higher waste decomposition 

rates (higher leachate concentration) have been reported with shredded waste against non-

shredded waste (Fuller et al., 1979; Kemper & Smith, 1981). 

2.5 Modeling of Leachate Constituents 

Mathematical modeling of leachate concentration profiles has been widely attempted in 

the past (Wigh, 1979; Demetracopoulos et al., 1986; Gönüllü, 1994; Rowe, 1995; 

Daskalopoulos et al., 1998; Gau & Chow, 1998; Kouzeli-Katsiri et al., 1999; Ozkaya et al., 2006). 

Two main modeling methods were used in the previous studies. The first one simply involves 

fitting empirical formulas to the different leachate concentration curves (Wigh, 1979; Lu et al., 

1984; Ozkaya et al., 2006). The concentration curves were fit against either time or cumulative 

leachate. The second modeling method is more complicated because it includes biological 

processes that take place in the leaching of contaminants within a landfill (Gönüllü, 1994; 

Kouzeli-Katsiri et al., 1999). In general, almost each researcher developed their own modeling 
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equation and included the parameters they believed were most important or relative to their 

experimental setup. The following studies were selected from the literature to illustrate various 

modeling approaches using laboratory data, field data, or both. 

(1) Wigh (1979) – Field-Scale Cells    

In this study, three cylindrical field-scale test cells were constructed and filled with 

refuse of known compositions. The researcher simulated measured COD data using the 

dissolved oxygen (DO) deficit equation used for determining DO concentration in a stream 

subjected to organic pollution. The equation is in terms of generated volume of leachate:  

      
           

                 
 

The equation has two first-order reactions representing aerobic decomposition and 

natural aeration. C is COD concentration; Cmax is the peak COD concentration; k1 and k2 are 

rate constants; v is leachate volume and vmax is cumulative leachate volume where Cmax value 

occurred. Using trial and error, k1 and k2 were determined to be 0.00098 mm
-1

 and 0.0145 mm
-1
, 

respectively. COD vs. leachate volume curves of both measured data and model predicted data 

for test cell 2A are shown in Figure 2-6. 
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Figure 2-6 Curves of Measured (2A) and Simulated COD Concentration vs. Leachate Volume 

 
 (2) Lu et al. (1984) 

This is one of the early studies that attempted developing relationships between 

leachate constituents and landfill age. Data from field cell tests of over 50 years was used in this 

study to develop the relationships based on the first-order rate equation:  

       
    

where: C is the pollutant concentration, Co is the initial pollutant concentration, k is the first-

order reaction rate constant, and t is time. BOD and COD upper boundary curves were plotted 

versus time as shown in Figure 2-7. Values of the reaction rate constant, k, for BOD and COD 

were found to be 0.043 and 0.045 yr
-1

, respectively. 



 21 

 

Figure 2-7 (a) BOD and (b) COD Upper Boundary Curves (Lu et al., 1984) 

 
(3) Gönüllü (1994) – Lab Data 

Leachate COD data from two lab-scale reactors was simulated using a model for 

estimating COD that the author recommended. The proposed model, 

 ( )     ( )*   ∮(       )  
  ( )  +, 

takes into account processes like dilution (G), mass transfer (R), substrate utilization (R1), and 

microbial mass production (R2). One of the model weaknesses is that it requires input of 

assumed values for some parameters such as: maximum COD value (C0), mass transfer rate 

constant, yield coefficient, leachate velocity constant, and others. Although the author provided 

graphs of good COD simulation curves, no statistical values for the goodness of fits were 

reported.  

(4) Rowe (1995) compared two equations used to model leachate concentrations with time. The 

first equation was used by Lu et al. (1981): 
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 ( )     
    , - 

where: C is the pollutant concentration, C0 is the maximum/initial pollutant concentration, k is 

the first-order reaction rate constant, and t is time. The second equation takes into account the 

dilution effect. It was developed by Rowe (1991):  

 ( )       [ (
  
  
  )  ]  , - 

and 

   
    
     

 

where: q0 is volume of generated leachate, Hr is reference height of leachate, λ is first-order 

decay constant, m0 is total mass of waste, p is proportion of mass contributed by the chemical of 

interest, and A0 is landfill area. The author suggested that the empirically derived equation [1] 

has the same form as the theoretically derived equation [2]. This makes k, the empirical first-

order constant in equation [1], dependent on volume of generated leachate per unit time (q0 A), 

mass of contaminant (p m0), peak concentration (C0), and first-order degradation constant (λ) as 

follows: 

  
       
    

   

 

(5) Kouzeli-Katsiri et al. (1999) – Laboratory Data 

Two models, with and without leachate recirculation, were developed in this study using 

data from six lab-scale lysimeters and verified using actual landfill data from literature. The 

models involve two main processes: the exchange of organic matter between solid and liquid 

phases and the depletion of dissolved organics as a result of biodegradation and flushing. COD 

represented the concentration of organic matter in leachate. 
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Model 1 (without recycle):  

 ( )       (
 

         
)(         [ (

 

 
   )  ]) 

Model 2 (with recycle): 

 ( )  
   

     
,    

          - 

where: C (g/L) is COD concentration in leachate, K1 (yr
-1

) is the rate constant of the decrease of 

organic matter in solid phase due to solubilization, K2 (yr
-1

) is the rate constant of biological 

decomposition of biodegradable COD in liquid phase, M is mass of COD in liquid phase, Mso (g) 

is initial mass of leachable COD in solid phase, Q (L
3
/yr) is leachate flow rate, t (yr) is time, and 

V (L
3
) is reactor volume. Simulations of lab data and data from literature gave very good fits with 

correlation coefficients greater than 0.90 in all cases (Figure 2-8). The authors suggested using 

K1 and K2 value ranges of 0.0027 to 0.0055 day
-1

 and 0.0016 to 0.0027 day
-1

, respectively, for 

new landfills.  
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(a) 

 

(b) 

Figure 2-8 Simulation of (a) Lab Data and (b) Data from Literature (Kouzeli-Katsiri et al., 1999) 
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 (6) Ozkaya et al. (2006) – Field Data  

The following equation was used in this study to simulate measured data of leachate 

BOD and COD concentrations: 

         
         

   

where: y is concentration of BOD/COD in g/L; , and  are unknown constants which 

were evaluated using the least square method; and t is time in months. Leachate was produced 

in two large-scale cells (25 m wide, 50 m long, and 5 m deep) at a landfill in Istanbul, Turkey. 

One cell was operated without leachate circulation (C1) and the other with circulation (C2). 

Good curve fits (R
2
=0.87-0.92) were obtained between measured data and model simulations 

(Figure 2-8). It is clear from BOD and COD curves in Figure 2-9 that leachate recirculation did 

not have a significant impact on the refuse decomposition rate.  

There are several drawbacks in the experimental setup of the previous studies that 

focused on developing models for calculating leachate BOD and COD. Three important factors 

were not considered while designing the lab-scale landfills that were intended to simulate the 

behavior of leachate strength and composition in actual landfills: 

1- temperature variations among different landfill locations and climates; 

2- different precipitation rates from one season to another; 

3- different types of waste; and   

4- combinations of factors 1-3. 

In this study, a different method was developed to estimate the degradability of landfill 

waste using landfill leachate as an indicator. The method involved 27 lab-scale anaerobic 

reactor landfills designed with several combinations of temperatures, rainfall rates, and different 

fractions of five waste components (paper, food, yard, textile, and inorganic waste). The reactor 

setup and data analysis approach are explained in details in the next chapter.  

a0, a1 a2
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(a) 

 

(b) 

Figure 2-9 Model Simulations over Field Data (C1 & C2) of (a) COD and (b) BOD (Ozkaya et al., 

2006). 
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Chapter 3 

Methodology 

3.1 Reactor Setup 

Twenty-seven 16-L high-density polyethylene (HDPE) wide-mouth plastic reactors were 

built as lab-scale landfills. The reactors were filled with various waste components and operated 

at the rainfall rate/temperature combinations discussed below.   

Before filling the reactors, leak-checks were performed with a U-tube manometer. Head 

difference was recorded to confirm that it was within 0.5 inch H2O after 12 hours and within 3 

inch H2O after 24 hours. Once reactors were leak-tested, their empty weight was measured. 

Reactors were then filled with refuse components, as described in the Experimental Design 

section below. Anaerobic digested sewage sludge was used as seed, obtained from Fort Worth 

Village Creek Wastewater Treatment Plant and added to each reactor to achieve 10-12 % by 

volume. Each reactor was then weighed and placed in its position in one of the constant 

temperature locations, and connected to a leachate collection bag (2-L Kendall-KenGuard 

Drainage Bag) and gas collection bag (22-L Cali 5-Bond Bag, Calibrated Instruments, Inc.), as 

shown in Figure 3-1. 
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(a) 

 

(b) 

Figure 3-1 (a) Schematic of Reactor Setup, (b) Picture of Reactors in Constant Room 

Temperature 
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3.2 Waste Components 

 Refuse components were the major biodegradable wastes: food, paper, yard/wood, and 

textile, as well as inert inorganics (Weitz et al., 2002). Food waste was obtained from local 

restaurants. A mixture of grass, leaves, and tree/brush trimmings was obtained from UTA’s 

grounds department to represent wood/ yard waste. A mixture of textiles was obtained from 

local tailors. Paper waste was obtained from UTA recycling bins (office paper), researcher 

personal recycling bins (newspapers, mail, magazines, tissues and towels, diapers), and a local 

grocery store (corrugated boxes and cartons). Inerts, including sand, dust, stones, glass, metals, 

plastic, were obtained from UT Arlington grounds and recycling bins and concrete pieces were 

collected from the Civil Engineering Lab Building.  

3.3 Rainfall Rates 

 Rainfall rates of 2, 6, and 12 mm/day (30, 240, and 450 mm/month) encompass 

precipitation rates for most locations around the globe except deserts (Pidwirny, 2010). The 

number of rainfall rates was kept small to limit the number of reactors due to time required for 

measurements and limited space in the constant temperature rooms. Leachate accumulating at 

the bottom of the reactors was removed daily and characterized, as discussed below. 

3.4 Temperatures 

 To determine how kBOD and kCOD vary with temperature, tests were conducted at 70°F, 

85°F, and 100°F. Reactors left in the open in the lab room were maintained at approximately 

70°F. Two constant temperature rooms maintained reactors at 85°F and 100°F. Testing 

reactors in a temperature below 70°F would mean that the data would cover a broader range of 

potential ambient temperatures; however, degradation rates would be slower for temperatures 

less than 70°F, which means that the lab experiments would take much longer. Also, the 

number of temperatures was kept small to limit the number of reactors due to time required for 

measurements and limited space in the constant temperature rooms.  
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3.5 Experimental Design 

 BOD and COD were measured over time for 27 16-L lab scale landfills with varying 

waste compositions (food, wood/straw, textile, paper, and inorganics ranging from 0 to 100 %, 

as shown in Table 3-1); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 70, 

85, and 100 °F. Tables 3-1 and 3-2 show the combinations used in each reactor. For example, 

Reactor-1, according to Table 3-2, was operated with 2 mm/day rainfall at a temperature of 

70°F, and contained waste component combination b, which according to Table 3-1 is 100% 

paper waste. The specific combined waste cases were determined by a mixture design. These 

combined waste cases served as blocking variable levels for an incomplete block design to 

study the primary factors, temperature and rainfall. This design was useful in keeping the 

number of reactors to a minimum, as discussed above. 

Table 3-1 Component Percent by Weight for Each Waste Combination 

Waste 

Component 

Component % by Weight for each Waste Combination 

a b c d e f g h i 

Food 100 0 0 0 0 60 30 10 20 

Paper 0 100 0 0 60 0 10 30 20 

Textile 0 0 100 0 0 30 0 60 20 

Yard 0 0 0 100 0 10 60 0 20 

Inorganics 0 0 0 0 40 0 0 0 20 

 

Table 3-2 Rainfall, Temperature, and Waste Component Combinations for Testing 

Rainfall 

(mm/day) 

Temp. 

(ºF) 

Waste Component Combination 

a b c d e f g h i 

2 

70  1     2  3 

85 4  5     6  

100  7  8     9 

6 

70 10  11  12     

85  13  14  15    

100     16   17   18     

12 

70       19   20   21   

85         22   23   24 

100 25         26   27   

Note: Each italic number indicates the number of the reactor. 
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3.6 Analytical Methods 

The leachate parameters (pH, BOD, and COD) were measured using Standard 

Methods for Examination of Water & Wastewater (Clesceri, 1999). BOD and COD were 

measured on a biweekly basis and leachate pH was measured daily. Some of the 2 mm/day 

reactors did not produce enough (200 mL) leachate for the laboratory analysis on the scheduled 

days. For those reactors, leachate was accumulated in the bag over a week period and then 

collected and analyzed. The standard procedure is to measure BOD after 5 days of incubation 

period. This is called the 5-day BOD or BOD5. In this study, it was discovered that the lab 

analyst responsible for measuring BOD in each leachate sample had been unintentionally 

incubating the samples for 4 days instead of 5. It was too late to change the incubation period to 

5 days. Therefore, leachate samples were analyzed for BOD4 until the reactors were dismantled.  

Two samples from Reactor-4 and Reactor-20 were collected and both BOD4 and BOD5 

were measured to check the difference between the two. The results are shown below in Table 

3-3. The percent difference between BOD4 and BOD5 ranged from 3.6 to 7.2% for the two 

reactors.    

    Table 3-3 Difference between BOD4 and BOD5  

Reactor #  mg/L Difference 

4 

Sample-1 
BOD4 441 

7.2 % 
BOD5 475 

Sample-2 
BOD4 417 

5.0 % 
BOD5 439 

20 

Sample-1 
BOD4 484 

4.2 % 
BOD5 505 

Sample-2 
BOD4 434 

3.6 % 
BOD5 450 
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3.7 Data Analysis 

The effects of temperature, rainfall rate, and types of refuse on the concentrations of 

BOD and COD were analyzed for any possible trends. In addition, BOD:COD ratio of every 

reactor was plotted against time to investigate the biodegradability of the studied types of waste.    

Like other leachate quality parameters, BOD and COD concentrations versus time 

resemble hydrograph-type curves, with a rising part, a peak concentration, and a declining part 

(Kouzeli-Katsiri et al., 1999). During the acidic phase of waste stabilization in landfills, anaerobic 

microbes decompose organic compounds and convert them into volatile fatty acids and, 

subsequently, into acetic acid. When leachate passes through waste during this stage, its BOD 

and COD content increases dramatically and its pH falls below 6. Maximum BOD and COD 

concentrations in landfill leachate are reached during this stage (Kjeldsen et al., 2002). The 

generation rate of dissolved organic compounds during this stage is much higher than both the 

rate of their decomposition by bacteria and the rate of their removal out of the landfill via 

leachate. This is the reason for the rising part of the BOD and COD concentration curves at the 

beginning of a landfill’s life. The declining part of these curves starts when the dissolved organic 

compounds in the landfill environment are consumed/decomposed by anaerobes and removed 

from the landfill by leachate much faster than they are generated. In other words, as waste 

decomposition in a landfill progresses, BOD and COD concentration curves continue to decline.  

Modeling the whole curve requires making assumptions about many constants in the 

modeling equations, depending on the approach used to develop the curve. In this study, our 

interest was only in the declining part of the BOD and COD curves, which were modeled using 

the first-order decay equation: 

      
    

where: C is pollutant concentration in mg/L, Ci is the initial (at time=0) concentration in mg/L, k 

is the exponential decay rate constant in day
-1

, and t is time in days. The idea was to try a 
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simple first-order model first, but future work will investigate whether an alternate model fits the 

data better. McGinley and Kmet (1984), Lu et al. (1985), and El-Fadel et al. (2002) used the 

first-order decay equation to fit curves to leachate BOD and/or COD data. The k value here is a 

net rate constant that can include both formation and decomposition rates of BOD and/or COD.  

However, the rate of decomposition dominates right after the peak BOD/COD value was 

reached, which gives k a minus sign.  

For each reactor, the highest BOD/COD data point was considered the peak BOD/COD 

value. For example, the peak COD value from Figure 3-2 is 16,000 mg/L. However, since each 

reactor’s BOD and COD were only measured every 2-4 weeks, the actual peak value of 

BOD/COD may not have been measured, if it occurred during a week when a sample was not 

taken.   

Figure 3-2 illustrates the curve fitting process. The red dots represent COD lab data and 

the dashed black line is the fitted exponential curve of the declining part of the data.  

 

Figure 3-2 Typical COD Data with a Fitting Curve 
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The initial concentration value (Ci) is the fitted curve’s y-intercept where time equals 

zero. Ci values were estimated using trial and error but they were eventually ignored in this 

study because they have no physical meaning since the fitted curve does not start from the 

beginning of the landfill operation (t = 0), instead, it starts somewhere around the peak value. 

Theoretically, the k value in this situation gives information about the speed of waste leaching 

and biodegradation within the landfill. The larger the k value, the faster the waste decomposition. 

Figure 3-3 illustrates this idea. Three COD vs. time curves with three different k values are 

shown in this figure. It is obvious that the 0.1 (day
-1

) curve reaches minimum COD value much 

faster than the 0.04 and 0.01 (day
-1

) curves. 

 

Figure 3-3 Illustration of the Significance of the k Value 

The goal here was to obtain two k values for each of the 27 reactors: one for BOD 

(kBOD) and the other is for COD (kCOD). Because reactor #10 failed, 26 kBOD values and 26 kCOD 

values were obtained using an Excel add-in package called XLSTAT. This software program 
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uses Levenberg-Marquardt Algorithm to fit the exponential curve on the lab data and gives the 

user values of k, Ci, and R
2
 (correlation coefficient).  

Using MINITAB and SAS software programs and the collected data, two multiple linear 

regression models were developed to predict kBOD and kCOD. Each k was modeled as a function 

of rainfall rate (mm/day), temperature (
0
F), and waste composition as shown in the following 

equation: 

k = β0 + β1 R + β2 T + β3 F + β4 P + β5 Y + β6 X + β7 I + ε 

where: k = first-order decay constant (day
-1

); βs = parameters to be determined through multiple 

linear regression, using the lab data; R = annual rainfall; T = average temperature at the landfill 

location; F = food fraction of landfilled waste; P = paper fraction of landfilled waste; Y = 

wood/yard fraction of landfilled waste; X = textile fraction of landfilled waste; I = inorganic 

fraction of landfilled waste; ε = error uncertainty, modeled as a random variable.  

 The detailed steps of the multiple linear regression model-building process are 

explained in Chapter 4. Once the two best models (kBOD and kCOD) were finalized, each model 

parameter was interpreted and its parameters were compared with the other model. The two 

models will be validated in future work.  
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Chapter 4 

Results and Discussion: Experiments and Regression Modeling 

This chapter presents and discusses the experimental results and the development of 

two mathematical models using multiple linear regression analysis. The two models will be used 

to predict leachate’s kBOD and kCOD values for a landfill in terms of rainfall rate, temperature and 

waste components. The chapter concludes with validation of the two models to evaluate their 

usefulness in a real situation. 

4.1 Leachate BOD and COD Results 

Maximum BOD concentrations (BODmax) in all reactors ranged between 856 and 46,134 

mg/L. These peak values were recorded within the first 100 days of the reactor’s life. It should 

be noted that since each reactor’s BOD was only measured every 2-4 weeks, the time to the 

peak value is approximate. Also, the actual peak value of BOD may not have been measured, if 

it occurred during a week when a sample was not taken. The time it took the BOD concentration 

to reach a stable low value ranged from 54 to 291 days since the first day of operation. COD 

peak values in this study were between 2,458 and 64,032 mg/L. It took some reactors only 7 

days to reach the peak value of COD before the declining trend started. Reactor # 2 took 102 

days to reach CODmax. The 26 reactors reached stable low COD concentrations at much 

different times that ranged between 66 and 321 days (see Table 4-1). This wide range 

emphasizes the significance of temperature, rainfall rate, and waste composition (the 

experimental factors) in the MSW waste stabilization process in landfills. 
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Table 4-1 Peak BOD and COD Values of All Reactors 

R # 
TimeBODmax 

(days) 
BODmax 

(mg/L) 
Time Until Stable 
BOD Value  (days) 

TimeCODmax 

(days) 
CODmax 

(mg/L) 
Time Until Stable 
COD Value  (days) 

1 41  5,082  223 105  6,094  223 

2 102  24,509  256 102  42,606  284 

3 53  10,043  179 53  22,674  293 

4 48  46,134  225 13  60,760  271 

5 53  8,960  180 82  16,054  231 

6 20  19,889  132 20  18,129  208 

7 50  2,816  127 50  6,212  127 

8 33  976  145 33  13,498  242 

9 42  18,823  141 42  38,777  239 

11 24  856  178 7  2,458  178 

12 41  3,183  152 15  9,095  204 

13 7  10,277  75 7  20,525  75 

14 14  12,361  88 14  30,256  144 

15 6  21,928  122 6  47,453  122 

16 27  6,008  111 27  6,879  132 

17 8  5,460  56 8  12,356  80 

18 9  18,401  106 9  50,756  114 

19 24  2,507  70 7  10,464  126 

20 10  13,805  291 10  28,848  321 

21 25  2,592  203 11  13,770  193 

22 25  2,318  54 14  9,163  66 

23 13  16,958  76 13  34,332  83 

24 8  9,081  76 8  16,487  83 

25 7  29,891  131 7  64,032  115 

26 11  15,755  115 11  39,024  95 

27 15  6,250  68 15  14,729  68 

Min 6 856 54 6 2,458 66 

Max 102 46,134 291 105 64,032 321 
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The behavior of BOD and COD contents in leachate was expected to change from one 

reactor to another depending on the levels of the controlled experimental factors (rainfall, 

temperature, and waste composition). The questions to be answered after the experiment was 

over were many: 

1- Which factor has the largest influence on the magnitudes of landfill leachate’s BOD and 

COD? 

2- Which waste components contribute the most/least in rising BOD and COD levels of the 

landfill leachate? And what information does that tell about the degradability of each type of 

waste? 

3- Which factor contributes the most in speeding up or slowing down the waste decomposition 

of organics in landfills? 

4- What are the optimum rainfall rate and temperature for a faster waste stabilization in 

landfills?  

BOD and COD results (in mg/L) for every reactor were plotted versus time. As 

mentioned in the methodology chapter, the experimental design of reactors included 9 different 

waste combinations. Each group of 3 reactors, out of 26 reactors, contained one waste 

combination. Plots of the reactors that contained the same waste composition (ex: 100% Yard 

waste) were grouped together in one figure to make observing any potential patterns much 

easier. All figures are presented in this section (Figure 4-1 to Figure 4-9). Each figure includes 

six plots (three BOD plots and three COD concentration plots) and each column shows the BOD 

and COD plots for one reactor. Waste composition (F=Food, P=Paper, Y=Yard, X=Textile, and 

Inorg.= Inorganic waste), rainfall rate and temperature for each reactor appear on top of each 

column of plots. Figure 4-1 shows only 4 plots because reactor # 10 failed after a few weeks of 

operation due to excessive acid accumulation. Microorganisms cannot survive in acidic 

environments. For this reason, alkaline water (pH=12.0) was added to some reactors 
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(especially those with food waste) in the acidic phase for 20-40 days in an attempt to neutralize 

the acidic environment inside those reactors. This method did not work with reactor # 10 and, 

therefore, it failed and was excluded from the experiment and the dataset. Unit of the vertical 

axes is mg/L. The title of each plot contains ‘BOD’ or ‘COD’ word followed by number of the 

reactor. For example, BOD-4 means BOD vs. time plot of reactor # 4.   

 

Figure 4-1 BOD and COD Plots of the Waste Composition a Reactors  
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Figure 4-2 BOD and COD Plots of the Waste Composition b Reactors 

 

Figure 4-3 BOD and COD Plots of the Waste Composition c Reactors 
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Figure 4-4 BOD and COD Plots of the Waste Composition d Reactors 

 

Figure 4-5 BOD and COD Plots of the Waste Composition e Reactors 
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Figure 4-6 BOD and COD Plots of the Waste Composition f Reactors 

 

Figure 4-7 BOD and COD Plots of the Waste Composition g Reactors 
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Figure 4-8 BOD and COD Plots of the Waste Composition h Reactors 

 

Figure 4-9 BOD and COD Plots of the Waste Composition i Reactors 
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4.1.1 Effects of Temperature and Rainfall Rate on BOD and COD 

When waste composition is the same for three reactors, the factors affecting the 

behavior of BOD and COD become temperature and rainfall rate. All reactors were operated 

under one of three temperatures, 70   (21.1  ), 85   (29.4  ), or 100   (37.8  ). They were 

also operated under three rainfall rates, 2 mm/day (100 mL/day), 6 mm/day (300 mL/day), or 12 

mm/day (600 mL/day). The data shown in Figures 4-1 to 4-9 clearly indicate that rainfall rate 

and temperature have a mutual effect on the leaching of organic matter from waste. This will 

become clearer in the following discussion.  

Any reactor that was operated in 85   and under either 2 mm/day or 6 mm/day rainfall 

rates always shows higher levels of BOD and COD than the other two reactors with same waste 

composition but different temperatures (see Figures 4-1, to 4-4, 4-6, and 4-8). When a 85   

reactor was operated under 12 mm/day rainfall rate, the 100    reactor in same waste 

composition group showed higher organic content (BOD and COD) in its leachate (see Figures 

4-5 and 4-9). This observation suggests that among the three temperatures adopted in this 

study, 85   is probably the closest to being the optimum temperature for microbial growth. 

Higher microbial growth translates into higher waste decomposition rates. However, when an 

85   reactor was exposed to 600 mL (12 mm/day rate) of rainfall per day, the story was 

different. The high rainfall rate caused enough number of microorganisms to be flushed out of 

the reactor and decreased the waste biodegradation rate.   

Reactors 1 through 6 show longer time (180-200 days) to reach minimum or stable 

BOD and COD concentrations and BOD:COD ratio (will be discussed in the next section) than 

all other reactors. Those six reactors were all operated under 2-mm/day rainfall rate and either 

70   or 85   temperatures (see Figures 4-1, 4-2, 4-3, 4-7, and 4-9). On the other hand, the 12-

mm/day reactors reached BOD and COD stability faster within a given waste composition group. 

Some researchers attributed low rates of waste stabilization and methane production to low 

moisture content within the landfill, and others found that higher precipitation rates lead to faster 
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waste decomposition (Sulfita et al., 1992; Miller et al., 1994). Qasim and Chiang (1994) 

mentioned an advantage and a disadvantage of applying water to the landfill waste in high rates. 

The advantage is that water removes most of the waste contaminants especially in the early life 

of a landfill. The disadvantage is that it also flushes microbes out of the system. Therefore, 

microbial activity in the landfill would have a much lesser effect on leachate quality.   

4.1.2 Waste Composition Effects on BOD and COD 

Unlike paper, yard, and textile wastes, the organic constituents of food waste are highly 

soluble especially in the early stages of the reactor life. Initial moisture content is also much 

higher in food waste than other waste components. These two properties of food waste make it 

the favorable for easier biological decomposition.  The highest BOD and COD concentrations 

were recorded in leachates collected from the reactors that contained 100% food waste (R-4 

and R-25). Food waste in reactors 4 and 25 underwent nearly complete decomposition. These 

two reactors were nearly empty when they were dismantled at the end of the experiment. The 

nine waste compositions used in this study are listed in Table 4-2 and ranked from 1 to 9 

according to the peak BOD and COD concentrations recorded for each one.  

Based on the reactors that contained one refuse type, Table 4-2 indicates that the order 

of waste components based on their biodegradability (BOD peak values) is food (46,134 mg/L), 

yard (12,361 mg/L), paper (10,277 mg/L), and textile (8,960 mg/L). The order appears to be the 

same for the COD content of the waste. Textile waste was the least favorable to degrade by 

microbes. Manufacturing textile involves adding large amounts of artificial materials, which 

probably suppressed microbial activity and the overall leaching process in the 100% textile 

reactors. The same thing can be said about paper waste to a lesser extent. Also, textile waste 

could have a filtration effect on leachate and, therefore, decrease its strength. 
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Table 4-2 BOD and COD Peak Values from Each Waste Composition 

BOD Peak Concentrations 

Rank Waste Composition Reactor # BOD (mg/L) 

1 100% F 4 46,134 

2 30% F + 10% P + 60% Y 2 24,509 

3 60% F + 30% X + 10% Y 15 21,928 

4 10% F + 30% P + 60% X 6 19,889 

5 20% F + 20% P + 20% X + 20% Y + 20% Inorg. 9 18,823 

6 100% Y 14 12,361 

7 100% P 13 10,277 

8 100% X 5 8,960 

9 60% P + 40% Inorg. 17 5,460 

COD Peak Concentrations 

Rank Waste Composition Reactor # COD (mg/L) 

1 100% F 25 64,032 

2 30% F + 10% P + 60% Y 18 60,760 

3 60% F + 30% X + 10% Y 15 50,756 

4 20% F + 20% P + 20% X + 20% Y + 20% Inorg. 9 38,777 

5 100% Y 14 30,256 

6 100% P 13 20,525 

7 10% F + 30% P + 60% X 6 18,129 

8 100% X 5 16,054 

9 60% P + 40% Inorg. 17 12,356 

 

The BOD:COD ratio is an indicator of the proportion of biologically degradable organic 

matter to total organic matter (Reinhart & Grosh, 1998). It decreases as the landfill ages. At the 

final stage of a reactor’s life, BOD:COD ratio becomes relatively low (<0.1) because dissolved 

organic matter that is degradable is consumed as rapidly as it is produced (Barlaz, 2006). 

BOD:COD ratios for all the reactors were plotted against time (Figure 4-10).  

Among all the reactors that contained 100% of one waste component, yard waste 

(Figure 4-10d) shows the lowest overall BOD:COD ratio. Leachate from yard waste alone was 

shown above to have higher amounts of BOD and COD than paper waste and textile waste. 

The ratio ranged from 0.4 to 0.8 in the acidic phase of waste decomposition. The 100% yard 
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reactors (Figure 4-10d) show a sharp decrease in this ratio from 0.5 to 0.1 within the first 60 

days of the reactor’s life. Five reactors (1, 2, 4, 20, 21) showed persistent (>0.4) BOD:COD ratio 

from the beginning of operation until day 200 or later (Figure 4-10a, b, f, g, h). Four of these 

reactors (2, 4, 20, 21) contained food waste and one reactor (R-1) contained 100% paper waste. 

It is also important to note that four of those five reactors were operated in the 70   room and 

one reactor was in the 85   room. The cause of the persistent BOD:COD ratio in those five 

reactors could be the presence of food waste, the low temperature (70  ), or both. In addition, 

those five reactors show two maxima in their BOD:COD ratio curves. According to Eleazer et al. 

(1997), the occurrence of more than one maxima can be explained by two possible scenarios. 

The first one is the presence of multiple substrates within a waste component. The second is 

that as the solid matrix of a waste component changes because of biodegradation, additional 

organics become bioavailable, which causes the BOD:COD ratio to go up again.  
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(a)    (b)    (c) 

 

(d)    (e)    (f) 

 

(g)    (h)    (i) 

Figure 4-10 Plots of BOD/COD Ratio vs. Time  
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4.2 Multiple Linear Regression Analysis 

In this chapter, two mathematical relationships were developed using Multiple Linear 

Regression (MLR) analysis approach. The first one is between the first-order reaction rate 

constant of leachate COD (kCOD) and six parameters that are believed to have an influence on 

this constant. The second relationship/model is between the first-order reaction rate constant of 

leachate BOD (kBOD) and the same six parameters. These parameters are rainfall rate, 

temperature, and fractions of four constituents of municipal solid waste: food, paper, yard, and 

textile. The initial plan was to include inorganic waste as well, but the five waste components 

add up to 1.0 in all reactors, which makes them perfectly collinear with each other. Therefore, it 

was decided to exclude inorganic waste since it has no contribution to the BOD or COD values. 

Kutner et al. (2005) explains in the following quotation why using MLR is the appropriate 

modeling method in this study. 

Multiple regression analysis is also highly useful in experimental situations where the 
experimenter can control the predictor variables. An experimenter typically will wish to 
investigate a number of predictor variables simultaneously because almost always 
more than one key predictor variable influences the response. 

 

The six predictor variables mentioned above were all well controlled in the lab. The 

word ‘linear’ here means linear in the model parameters. This can be clearly seen the general 

first-order linear relationship between response/dependent variable (Y) and the 

predictor/independent variables that was used in MLR analysis in this study: 

Y = β0 + β1X1 + β2 X2 + β3 X3 + β4 X4 + β5 X5 + β6 X6 + ε 

where β0 to β6 are the unknown model parameters, X1 to X6 are the predictor variables, and ε is 

the random error term. β0 is the Y intercept of the regression plane. If all predictor variables 

equal zero, the response variable Y equals β0; otherwise β0 does not mean anything by itself. β1 

represents the change in the response Y per unit increase in X1 when all other predictor 
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variables are held constant. The same thing can be said about the other parameters (β2 to β6), 

which are sometimes referred to as partial regression coefficients.  

 The MLR model building process consists of four phases: 

1- Data collection and preparation 

a. Choose model response and predictor variables,  

b. Collect data 

c. Fit a preliminary model 

i. Check scatterplots and correlations 

ii. Check model assumptions (no curvature, constant error variance, uncorrelated 

errors, and normally distributed errors) 

iii. Perform any necessary transformations 

iv. Check model diagnostics (outliers, influence, and multicollinearity). 

v. Explore possibility of interactions 

2- Model search 

Find potential best models using three methods: Best Subsets Selection, Stepwise 

Regression, and Backward Deletion.  

3- Model selection 

a. Check model assumptions for potentially best models 

b. Check model diagnostics for potentially best models 

4- Model validation  
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4.3 Obtaining k Values from Experimental Data 

The kBOD and kCOD values were obtained using the Levenberg-Marquardt algorithm, 

which is an iterative technique that is used to solve non-linear least squares problems. In other 

words, this algorithm was applied on BOD and COD data to get their best exponential curve fits. 

For some reactors, like Reactor # 4 (Figure 4-11), the data shows a rising part and a declining 

part. In this study, the data used to fit the exponential curve started from the peak BOD or COD 

value until the end of the reactor’s life. Therefore, the fitted curve simulates only the declining 

part of the data, as shown in Figure 4-11 for Reactor # 4 (R-4). The exponential equation in this 

figure shows -0.018 day
-1

 as the kBOD value for this reactor. The correlation coefficient (R
2
) of 

the fit is 0.94, which makes it a good curve fit.  

 

Figure 4-11 BOD Concentration Plot for Reactor 4 Showing Exponential Curve Fit  

The R
2 

values of all twenty-six COD curve fits are above 0.90. The R
2 

values of the 

twenty-six BOD curve fits are all above 0.85 except for Reactor # 11 (R
2
=0.78). Due to the low 

overall COD and BOD concentration in leachate, It was suspected that reactor #11, among 
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other reactors, experienced microbial washout due to excessive water addition during the first 

few days of the experiment. Nevertheless, these reactors’ data was included in the modeling 

dataset. Figure 4-12 shows the BOD fitted exponential curves for six reactors. The rest of the 

plots can be found in Appendix A. Table 4-3 includes all kBOD and kCOD values with reactor 

number, rainfall rate, temperature, and waste component fractions. All k values have a minus 

sign since BOD and COD decrease with time, but they are shown as positive for a more 

convenient linear regression process.  
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Figure 4-12 BOD Concentration Plots Showing Exponential Curve Fits 

 

 



 54 

Table 4-3 Data Used in the Regression Modeling 

R 
# 

kBOD 
(day-1) 

kCOD 

(day-1) 

Rainfall Rate 
(mm/day) 

Temperature  

( )  

Waste Fraction By Weight (0-1.0) 

Food Paper Yard Textile Inorg. 

1 0.013 0.017 2 70 0.0 1.0 0.0 0.0 0.0 

2 0.023 0.020 2 70 0.3 0.1 0.6 0.0 0.0 

3 0.017 0.019 2 70 0.2 0.2 0.2 0.2 0.2 

4 0.018 0.017 2 85 1.0 0.0 0.0 0.0 0.0 

5 0.043 0.031 2 85 0.0 0.0 0.0 1.0 0.0 

6 0.037 0.021 2 85 0.1 0.3 0.0 0.6 0.0 

7 0.129 0.059 2 100 0.0 1.0 0.0 0.0 0.0 

8 0.021 0.017 2 100 0.0 0.0 1.0 0.0 0.0 

9 0.035 0.032 2 100 0.2 0.2 0.2 0.2 0.2 

11 0.019 0.021 6 70 0.0 0.0 0.0 1.0 0.0 

12 0.045 0.026 6 70 0.0 0.6 0.0 0.0 0.4 

13 0.040 0.043 6 85 0.0 1.0 0.0 0.0 0.0 

14 0.045 0.040 6 85 0.0 0.0 1.0 0.0 0.0 

15 0.026 0.028 6 85 0.6 0.0 0.1 0.3 0.0 

16 0.074 0.033 6 100 0.0 0.0 0.0 1.0 0.0 

17 0.077 0.076 6 100 0.0 0.6 0.0 0.0 0.4 

18 0.032 0.036 6 100 0.3 0.1 0.6 0.0 0.0 

19 0.073 0.044 12 70 0.0 0.0 1.0 0.0 0.0 

20 0.042 0.044 12 70 0.6 0.0 0.1 0.3 0.0 

21 0.018 0.031 12 70 0.1 0.3 0.0 0.6 0.0 

22 0.112 0.087 12 85 0.0 0.6 0.0 0.0 0.4 

23 0.070 0.064 12 85 0.3 0.1 0.6 0.0 0.0 

24 0.036 0.036 12 85 0.2 0.2 0.2 0.2 0.2 

25 0.043 0.043 12 100 1.0 0.0 0.0 0.0 0.0 

26 0.042 0.048 12 100 0.6 0.0 0.1 0.3 0.0 

27 0.060 0.059 12 100 0.1 0.3 0.0 0.6 0.0 
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4.4 Modeling kCOD 

4.4.1 Scatter Plots Matrix and Correlation Matrix 

Before fitting a preliminary regression model, the relationship and correlation between 

kCOD and each predictor variable should be evaluated for any existing trends. Also, the 

predictor-predictor relationships have to be checked for possible multicollinearity. The matrix of 

scatter plots in Figure 4-13 and the correlation matrix in Table 4-4 were utilized for this purpose. 

From the matrix of plots below, an upward linear trend was clear between kCOD and Rainfall and 

Temperature. Also, it was surprising to see a slightly declining trend between kCOD and each of 

the Food, Yard, and Textile waste components. Theoretically, it is expected that the exponential 

decay rate of leachate COD (kCOD) will increase when the amount of organics increases. kCOD 

combines two waste decomposition mechanisms in landfills: leaching and degradation via 

microorganisms. This is also true for kBOD. This issue is discussed thoroughly at the end of this 

chapter. The scatter plot of kCOD vs. Paper did not show a clear trend. There was a slight 

downward trend in three predictor-predictor scatter plots: Food vs. Paper, Paper vs. Yard, and 

Yard vs. Textile. This observation might indicate presence of multicollinearity among predictor 

variables. For the MLR analysis to work, predictor variables have to be independent from each 

other. The following steps will determine whether the observed multicollinearity is serious or can 

be ignored. 

The matrix of Pearson correlation coefficients (Table 4-4) is another way of evaluating 

linear dependence among variables. Each value in this matrix is called Pearson’s r. The r-value 

ranged between -1 and 1 and the closer this value was to 1 or -1, the stronger the positive or 

negative linear correlation between the two variables. None of the predictor variables had a 

strong positive/negative linear correlation with kCOD (-0.222  r  0.564). kCOD was positively 

correlated with Rainfall (r = 0.564) and Temperature (r = 0.373) and negatively correlated with 

Food (r = -0.122), Yard (r = -0.094) and Textile (r = -0.222). There were moderately high 

intercorrelations among predictor variables: Food vs. Paper (r = -0.441), Paper vs. Yard (r = -
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0.395), Paper vs. Textile (r = -0.326), and Yard vs. Textile (r = -0.395). As mentioned above, the 

significance of multicollinearity in the predictor variables will be determined later and the 

decision will be made whether to keep all of the predictors or remove any of them. These 

observations were consistent with the scatter plots above.  

 

Figure 4-13 Matrix of Scatter Plots  

Table 4-4 Correlation Matrix of kCOD and the Predictor Variables 

           kCOD    RainF    Temp     Food     Paper    Yard    Textile 

RainF      0.564    1.000  

Temp       0.373   -0.008    1.000 

Food      -0.122    0.196    0.126    1.000 

Paper      0.277   -0.189   -0.037   -0.441    1.000 

Yard      -0.094    0.001   -0.031   -0.148   -0.395    1.000 

Textile   -0.222   -0.010   -0.034   -0.199   -0.326   -0.395    1.000 

 

Cell Contents: Pearson correlation 
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4.4.2 Fitting a Preliminary Model 

Table 4-5 shows results of regressing kCOD on all six predictors: Rainfall, Temperature, 

Food, Paper, Yard, and Textile.  The table contains the preliminary model, coefficient estimates, 

and the ANOVA (Analysis of Variance) table. 

Table 4-5 Preliminary Model, Parameter Estimates and the ANOVA Table 

kCOD = - 0.0063 + 0.00275 RainF + 0.000614 Temp - 0.0381 Food - 

0.0152 Paper - 0.0285 Yard - 0.0338 Textile 

 

Predictor       Coef    SE Coef      T      P    VIF 

  

Constant    -0.00628    0.02491  -0.25  0.804 

RainF        0.00275    0.00057   4.81  0.000  1.077 

Temp         0.000614   0.00019   3.20  0.005  1.018 

Food        -0.03809    0.01921  -1.98  0.062  6.135 

Paper       -0.01522    0.02203  -0.69  0.498  9.937 

Yard        -0.02853    0.01901  -1.50  0.150  7.812 

Textile     -0.03382    0.01869  -1.81  0.086  7.458 

 

S = 0.0117437   R-Sq = 69.6%   R-Sq(adj) = 60.0% 

 

Analysis of Variance 

 

Source          DF         SS         MS     F      P 

Regression       6  0.0060050  0.0010008  7.26  0.000 

Residual Error  19  0.0026204  0.0001379 

Total           25  0.0086254 

 

4.4.3 Model Assumptions Check 

Before analyzing the preliminary MLR model in details, it should be checked whether the 

model assumptions are satisfied. These assumptions are: 

A- The linear MLR model form is reasonable. 

B- The residuals have constant variance. 

C- The residuals are normally distributed. 

D- The residuals are uncorrelated. 

Also, the model must be checked to make sure that: 



 58 

E- There are no outliers, and that 

F- Multicollinearity among predictor variables is not serious. 

Residual analysis is very helpful to study the model assumptions and check whether they 

are satisfied. A residual value (ei) is the difference between the observed value of the response 

variable (     ) and the fitted value ( ̂    ).  

Assumption A: 

The MLR model form can be checked using the matrix of scatter plots that was 

discussed above. It was observed from that matrix that the response-predictor plots showed 

some linear trends even though some of them were hard to see. Another way of checking this 

assumption is to plot residuals vs. predictor variables (Figure 4-14). If these do not show 

curvature, the linear model form assumption is verified. From Figure 4-14, the Residual vs. 

Food plot and Residual vs. Yard plot both showed curvature. This means that assumption A 

was violated and remedial measures should be considered to solve the issue. Model 

transformations were conducted after all assumptions were checked. 

Assumption B: 

A plot of residuals versus fitted values can verify whether this assumption is satisfied. If 

this plot does not show funneling, then it indicates that the residuals have a constant variance. 

From Figure 4-15, it appeared that a slight funnel shape was present, which meant that the 

constant variance assumption was violated.  

Assumption C: 

A Normal Probability Plot is used to check whether the residuals are normally 

distributed. In this plot, each residual is plotted against its expected value under normality. If this 

plot shows a linear trend, it suggests that the model’s normality assumption is satisfied. Figure 
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4-16 shows this plot for the preliminary MLR model. It seemed that the points had shorter left 

and right tails, which indicates that the normality assumption was not satisfied. 

 

Figure 4-14 Residual vs. Predictor Plots  
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Figure 4-15 Plot of Residuals vs. kCOD Fitted Values  

 

Figure 4-16 Normal Probability Plot 
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Assumption D: 

Since the reactors were operated at the same point of time, they were not expected to 

be autocorrelated. Hence, this assumption was not checked in this study. 

Before moving on to outlier analysis, model transformations will be discussed next. 

4.4.4 Transformations  

When the linearity assumption and/or the constant variance assumption are violated, 

transformations can be used to make the linear regression model appropriate for the 

transformed data. Sometimes a transformation of response variable alone fixes both linearity 

and constant variance assumptions. If curvature remains present, then additional 

transformations on the predictor variables can be attempted to address this. 

The first step was to transform the response variable      into the square root of      

and check the constant variance and normality assumptions after fitting the regression model 

with √     as the response variable. The residual plots of the new model can be seen in 

Appendix B. It looked like this first transformation attempt fixed the constant variance 

assumption, but the normal probability plot still showed left and right short tails. Also, the two 

plots of Residual vs. Food and Residual vs. Yard showed curvature. Therefore, linear model 

form and normality assumptions were still in question.  

The second transformation attempt was to take the logarithm (base 10) of the response 

variable,      (    )  After fitting the model, both residual vs. fits and normal probability plots 

improved (see Appendix B). This means that normality and constant variance assumptions were 

satisfied. However, curvature still appeared in Residual vs. Food and Residual vs. Yard plots 

(see Appendix B). So, the linearity assumption was not yet satisfied.  

Further response variable transformations were not attempted it the response was kept 

as       (    ) . However, two predictor variables (Food and Yard) were transformed into 
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√     and √     in an attempt to mitigate the curvilinear patterns and satisfy the linearity 

assumption. The regression model was fitted and it turned out that this combination of variable 

transformations was the best in terms of satisfying the MLR model assumptions as the next few 

paragraphs and figures will show.  

The transformed model was: 

     (    )                              √              √         

where R=Rainfall, T=Temperature, F=Food, P=Paper, Y=Yard, and X=Textile.  

The transformed model’s parameter estimates are shown in Table 4-6. Overall, there 

was a low to moderate level of multicollinearity for this model (all VIFs < 5 except one value). 

Before analyzing the transformed mode, a re-check of the model assumptions had to be made. 

Table 4-6 Parameter Estimates of the Transformed Model 

Predictor       Coef   SE Coef      T      P    VIF 

 

Constant     -2.2826    0.2403    -9.50  0.000 

     R        0.034975  0.006080   5.75  0.000  1.073 

     T        0.007125  0.002049   3.48  0.003  1.021 

sqrt(F)      -0.1278    0.1166    -1.10  0.287  2.580 

     P        0.1303    0.1725     0.76  0.459  5.355 

sqrt(Y)      -0.0094    0.1325    -0.07  0.944  3.883 

     X       -0.0669    0.1428    -0.47  0.645  3.825 

 

Assumption A: From the six residual-predictor plots shown in Figure 4-17, slight 

curvature still appeared in the √  plot and the Textile plot, but the curvature was not clear, and 

the plots could not be further improved with further transformations. Hence, it was concluded 

that the linear model form was acceptable.  

Assumption B: Figure 4-18 does not exhibit a funnel shape, so, the constant variance 

assumption was satisfied. 
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  Assumption C: The normal probability plot in Figure 4-19 shows a slightly shorter right 

tail than normality.  However, the linearity in the plot is mostly straight, so normality appears 

mostly reasonable. Modified Levene Test and Normality Test were performed (see Appendix B) 

to confirm that transformed model satisfied the constant variance and normality assumptions. 

 

Figure 4-17 Residual-Predictor Plots of the Transformed Model 
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Figure 4-18 Transformed Model’s Plot of Residuals vs. Fitted Values  

 

Figure 4-19 Normal Probability Plot of the Transformed Model 
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Outlier Analysis: 

An outlier is an extreme observation that is distant from the rest of the data. There are 

two types of outliers: x-outliers and y-outliers. Once an outlier has been identified, its influence 

on the regression is evaluated.  

Leverage values (hii) are used to identify x-Outliers. If     
  

 
, then observation i is an 

x-outlier, where p is the number of parameters and n is the number of observations. In the case 

of this study’s data, 
  

 
 
 ( )

  
       and the maximum hii value from Table 4-7 was 0.501; 

therefore, there were no x-outliers. 

The Bonferroni test is used to identify y-Outliers. If |  |   .  
 

  
      / , then 

observation i is a y-outlier. The absolute Studentized Deleted Residuals | | for this study’s data 

are shown in Table 4-7. Choosing the confidence level to be 90%: 

            (  
   

 (  )
       )   (          )        

All | | values in Table 4-7 were less than 3.316; therefore, there were no y-outliers. 

ANOVA of the Transformed Model (Table 4-8): 

- SSTO (Total Sum of Squares) = 1.054. 

- SSE (Error Sum of Squares) = 0.298. 

- SSR (Regression Sum of Squares) = 0.756. 

 SSTO is the measure of total variability in the values of       (    ); the purpose of the 

regression model is to seek predictor variables that explain this variability. SSR is the measure 

of variability of       (    ) values that is explained by the current model. Finally, SSE is the 

measure of variability of the       (    ) values that is not explained by the current model. 
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Table 4-7 Residuals, Leverage Values, and Studentized Deleted Residuals 

Observation ei hii |ti| 

1 -0.186 0.325 1.932 

2 0.079 0.267 0.729 

3 0.041 0.184 0.357 

4 -0.035 0.501 0.383 

5 0.165 0.308 1.658 

6 -0.029 0.155 0.248 

7 0.141 0.336 1.414 

8 -0.260 0.367 3.167 

9 0.054 0.173 0.464 

10 -0.037 0.320 0.348 

11 -0.089 0.289 0.837 

12 -0.030 0.256 0.268 

13 0.079 0.260 0.720 

14 0.036 0.128 0.303 

15 -0.054 0.327 0.518 

16 0.163 0.261 1.570 

17 -0.019 0.204 0.167 

18 0.017 0.384 0.169 

19 0.130 0.229 1.191 

20 -0.103 0.237 0.938 

21 0.119 0.294 1.136 

22 0.128 0.201 1.150 

23 -0.138 0.127 1.190 

24 -0.088 0.410 0.914 

25 -0.046 0.210 0.406 

26 -0.037 0.249 0.335 

Max  0.501 3.167 
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R
2
 is the coefficient of determination. It was calculated as follows: 

   
   

    
     

     

     
            

and it can be interpreted as the percentage of total variability of the       (    ) values that is 

explained by the model.  

Table 4-8 ANOVA Table of the Transformed Model 

Analysis of Variance 

 

Source          DF       SS       MS     F      P 

Regression       6  0.75583  0.12597  8.03  0.000 

Residual Error  19  0.29820  0.01569 

Total           25  1.05402 

 

S = 0.125278   R-Sq = 71.7%   R-Sq(adj) = 62.8% 

 

4.4.5 Interaction Terms 

In some cases, two of the predictor variables may have an interaction effect on the 

model instead of an additive effect. The following is an example of this case: 

               Additive Effect, 

                      Interaction Effect. 

The term        is referred to as interaction term. In this section, only the possibility 

and the method of adding interaction terms to the model will be discussed. Interpretation of 

these terms, if any, will be discussed after finalizing the best model.  

 Because there were already six predictor variables in the model, adding more could 

further complicate it. For this reason, Partial Regression Plots were used to determine which 

interaction term(s) might improve the model if added to it. A partial regression plot is created in 

three steps: 
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a- Regressing the response variable       (    )  on the six original predictors 

(    √    √   ) and calculating the residuals of this regression,  

b- Regressing the interaction term (example: RX) on the six original predictors and calculating 

the residuals of this regression, 

c- Plotting residual from step (a) versus residual from step (b). 

After that, if any of these plots show a reasonable linear trend, it suggests that the 

associated interaction term could improve the model if added to it. Figure 4-20 shows the three 

plots where good linear trends were observed (the rest of the partial regression plots can be 

seen in Appendix B). Therefore, it was decided to add those three interaction terms (RX, TP, 

and T√ ) to the model. Before adding the terms, it was important to check whether they are 

highly correlated with the original predictor variables. Table 4-9 shows the correlation matrix of 

the interaction terms to be against all original variables. All three terms were highly correlated 

(High r values in the table were italicized) with at least one original predictor variable. 

Standardizing an interaction term usually mitigates its high multicollinearity with original 

predictors. Here is an example of standardizing an interaction term: 

   (  )  (
    ̅

  
) (
    ̅

  
) 

where    (  ) is the standardized    term,  is the average rainfall, and    is the standard 

deviation of rainfall. The same can be said about  . The lower part of Table 4-9 shows the 

correlation matrix of the standardized terms against the original model variables. It was clear 

from the italicized r values that the multicollinearity problem was solved by standardizing the 

interaction terms. 

 

   

R 
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Figure 4-20 Partial Regression Plots 
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Table 4-9 Correlation Matrix of the Interaction Terms 

 

          LOG10(kCOD)    R         T        rtF        P       rtY         X     

 

  RX       0.02998   0.38003  -0.03196   0.00287  -0.25776  -0.35005   0.79088 

 

  TP       0.30163  -0.18373   0.07429  -0.46777   0.98386  -0.45004  -0.32048  

 

  TrtY    -0.08513  -0.00098   0.07728   0.05797  -0.44982   0.98337  -0.39754 

 

------------------------------------------------------------------------------

- 

 

Std(RX)   -0.17426  -0.06878   0.00728   0.11151   0.25863   0.03517  -0.29223 

 

Std(TP)    0.38062   0.02874   0.01855  -0.0511   -0.01929   0.05096   0.04175 

 

Std(TrtY) -0.38116  -0.20926   0.01932  -0.07949   0.05100  -0.01696   0.04657 

 

4.4.6 Model Search 

After considering the three interaction terms to be added to the model, the number of 

possible predictor variables (p) became 9: 

    √    √       (  )    (  )    ( √ ) 

The number of possible models that could be formed from 9 predictor variables was 

256 ( (   )   ( )      models). It would have taken too long to assess each possible model 

to determine the best one to explain the variability in the kCOD data. Instead, three model search 

methods with time saving algorithms were used in this study to achieve this goal. The three 

methods, Best Subsets, Backward Elimination, and Stepwise Selection, were conducted using 

the SAS software program.  

Method 1: Best Subsets 

Best subsets algorithms identify the best model based on certain criteria. The user chooses 

the number of best models to be fitted and the number of variables in each model. Five criteria 

were used in this method to recognize the best models: 
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1- R
2
 (the coefficient of multiple determination) explains the total variability in the fitted 

     (    ) data that is explained by the model. R
2
 always increases as more predictor 

variables are added to the model. The intent here was to find the point where this value does 

not increase much by adding more predictors to the model. 

2- R
2
adj (the adjusted coefficient of multiple determination) does not account for the number of 

predictors in the regression model, which makes it a better criterion than R
2
. R

2
adj increases 

only if the added predictor variable improves the model. Also, an R
2
adj close to R

2
, indicates 

the model does not contain unimportant variables. 

3- C(p) (Mallow’s criterion) is a measure of the total mean squared error of the fitted values. A 

lower the C(p) value with C(p) close to p is preferred.  

4- AIC (Akaike’s information criterion): Models with small AIC are preferred.   

5- SBC (Schwarz’ Bayesian criterion): Models with small SBC are preferred.   

The best subsets algorithm was run using a 0.1 significance level. Two potentially good 

models (highlighted in Table 4-10) were identified using this method; the first model has five 

predictor variables and the second has six. These two models were chosen because their C(p), 

AIC, and SBC values were the lowest among all other possible models. When the six-variable 

model was fitted, it showed one statistically insignificant (p-value > 0.1) predictor ( √ ). 

Therefore, this model was removed from consideration. The 4-predictor model was not 

considered because it showed higher C(p), AIC, and SBC values, and lower R
2

adj and R
2 
values 

than the 5-predictor model. 

Method 2: Backward Elimination 

In this method, all predictor variables are included in the model as the first step. In the 

next step, the predictor variable with the highest p-value (denoted Pr > F in Table 4-11) that 
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exceeds a predetermined level (α = 0.1 in this case) is considered insignificant, and it is 

removed from the model. The second step is repeated, as many times as needed, until all 

Table 4-10 MINITAB Output of Best Subsets Model Search Method  

No. of    R-Sq(adj)  R-Sqr      C(p)       AIC        SBC    Variables in 

Model 

Variables 

     

    4     0.7831    0.8178   10.0120   -117.5902   -111.29968  R T P Std(TP) 

 

    5     0.8325    0.8660    5.1312   -123.5784   -116.02978  R T P  

                                                               Std(RX)                  

                                                               Std(TP) 

 

    6     0.8409    0.8791    5.2638   -124.2488   -115.44210  R T P rtY   

                                                               Std(RX)  

                                                               Std(TP) 

 

    7     0.8384    0.8836    6.6149   -123.2449   -113.18009  R T rtF P X 

                                                               Std(RX) Std(TP) 

     

    8     0.8349    0.8878    8.0266   -122.1822   -110.85936  R T rtF P X 

                                                               Std(RX)Std(TP) 

                                                               Std(TrtY) 

 

remaining predictor variables in the model are statistically significant (their p-values are below 

0.1).  This final step is shown in Table 4-11 where only one potentially good model was left. The 

model had five predictor variables: 

         (  )    (  ) 

Method 3: Stepwise Selection 

 This method starts with no predictor variables in the model. The variables are entered in 

the model and removed from it according to two predetermined limits (αin = 0.1 and αout = 0.1). 

The process is done in steps like the previous method and only one potentially good model is 

left in the final step. The final model determined by this method was the same as that 

determined by the previous two methods (see Table 4-12). To summarize, the three model-

search methods were all pointing to one potentially good model. The next step is to verify 

whether this model satisfies the model assumptions. 
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Table 4-11 MINITAB Output of the Backward Elimination Model Search Method 

The REG Procedure 

Model: MODEL1 

Dependent Variable: LOG10kCOD 

Backward Elimination: Step 4 

Variable X Removed: R-Square = 0.8660 and C(p) = 5.1312 

 

Analysis of Variance 

                                   Sum of           Mean 

         Source          DF        Squares         Square    F Value    Pr > F 

 

         Model            5        0.91371        0.18274      25.86    <.0001 

         Error           20        0.14136        0.00707 

         Corrected Total 25        1.05507 

 

                           Parameter     Standard 

          Variable         Estimate        Error   Type II SS  F Value  Pr > F 

          Intercept        -2.34153      0.12298      2.56233   362.53  <.0001 

          R                 0.03328      0.00401      0.48606    68.77  <.0001 

          T                 0.00690      0.00136      0.18131    25.65  <.0001 

          P                 0.25563      0.05267      0.16652    23.56  <.0001 

          Std(RX)          -0.05644      0.02104      0.05084     7.19  0.0143 

          Std(TP)           0.07393      0.01709      0.13224    18.71  0.0003 

------------------------------------------------------------------------------ 

         All variables left in the model are significant at the 0.100 level. 

 

Table 4-12 MINITAB Output of the Stepwise Selection Model Search Method 

The REG Procedure 

Model: MODEL1 

Dependent Variable: LOG10kCOD 

Stepwise Selection: Step 5 

Variable Std(RX) Entered: R-Square = 0.8660 and C(p) = 5.1312 

 

Analysis of Variance 

 

                                     Sum of           Mean 

        Source           DF        Squares         Square    F Value    Pr > F 

 

        Model             5        0.91371        0.18274      25.86    <.0001 

        Error            20        0.14136        0.00707 

        Corrected Total  25        1.05507 

 

                           Parameter     Standard 

          Variable         Estimate        Error   Type II SS  F Value  Pr > F 

 

          Intercept        -2.34153      0.12298      2.56233   362.53  <.0001 

          R                 0.03328      0.00401      0.48606    68.77  <.0001 

          T                 0.00690      0.00136      0.18131    25.65  <.0001 

          P                 0.25563      0.05267      0.16652    23.56  <.0001 

          Std(RX)          -0.05644      0.02104      0.05084     7.19  0.0143 

          Std(TP)           0.07393      0.01709      0.13224    18.71  0.0003 
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4.4.7 Checking the Selected Model’s Assumptions 

Figures 4-21, 4-22, and 4-23 are the selected model’s residual plots. The residual-

predictor plots in Figure 4-21 did not show serious curvature or funneling and neither did the 

plot of residuals vs. fitted values (Figure 4-22). So, the linearity and constant variance 

assumptions were satisfied. The normal probability plot in Figure 4-23 showed a strong linear 

trend; therefore, normality was reasonable. Two hypothesis tests were performed to confirm 

whether the selected model satisfied the constant variance and normality assumptions.  

Modified Levene Test is a tool that is to test whether the residuals have a constant 

variance. It divides the 26 residuals, at their median value, into two groups of 13 observations 

each; d1 and d2. Variances (       ) of the two groups are then tested to check whether they 

are equal. 

1- F-test  

- Hypothesis: 

                  

              

- Decision Rule:  

If the p-value from the F-test is < 0.1, then reject   . 

Table 4-13 is SAS output of the Modified Levene Test (also called Brown and 

Forsythe test). The F-test p-value (denoted Pr > F) was 0.4842 > 0.1, so failed 

to reject   .   

- Conclusion: 

  Variances of d1 and d2 were equal. 
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2- T-test was performed to check whether the means of d1 and d2 populations were equal. 

- Hypothesis: 

                                

                                     

- Decision Rule:  

If the p-value from the t-test is < 0.1, then reject   . 

The p-value from Table 4-13 (pooled- Pr > | t |) was 0.8459 > 0.1, so failed to 

reject   .   

- Conclusion: 

  The model’s error variance was constant. 

Table 4-13 SAS Output of Modified Levene Test 

The TTEST Procedure 

Variable:  d 

 

     group       N        Mean     Std Dev     Std Err     Minimum     Maximum 

     1          13      0.0550      0.0547      0.0152           0      0.1460 

     2          13      0.0589      0.0445      0.0123           0      0.1561 

     Diff (1-2)        -0.00384     0.0498      0.0195 

 

                   Method           Variances        DF    t Value    Pr > |t| 

                   Pooled           Equal            24      -0.20      0.8459 

                   Satterthwaite    Unequal      23.041      -0.20      0.8460 

 

Equality of Variances 

              Method      Num DF    Den DF    F Value    Pr > F 

              Folded F        12        12       1.51    0.4842 
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Figure 4-21 Residuals vs. Predictor Plots of the Selected Model 
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Figure 4-22 Residuals vs. Fits Plot of the Selected Model 

 

Figure 4-23 Normal Probability Plot of the Selected Model 
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The Normality Test is performed to confirm whether the residuals are normally 

distributed. It is conducted by calculating the correlation coefficient between the residuals (e) 

and their expected values under normality (enrm).  

- Hypothesis: 

                            

                            

- Decision Rule:  

If the correlation coefficient p is <  (   ), then reject   .   is the critical value, 

  was 0.1 and   was 26.  (   )  (      )        

Table 4-14 shows SAS output of the normality test.  

p = 0.9918 > 0.967, so failed to reject   .   

- Conclusion: 

Normality assumption was satisfied. 

Table 4-14 SAS Output of the Normality Test  

                                            e          enrm 

 

         e                                      1.00000       0.99180 

         e(Log10kCOD | R T P stdRX stdTP) 

 

         enrm                                   0.99180       1.00000 

         Normal scores 

 

X-Outliers: 

Leverage values (hii) of two observations (see Table 4-15) exceeded the cutoff value 

.
  

 
 
 ( )

  
      /.  Therefore, observations 1 and 7 were x-outliers. 
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Y-Outliers: 

The Bonferroni test was performed and no |  |  values were found to exceed 

 .  
 

  
      /   .  

   

    
       /   (          )      . 

Therefore, there were no y-outliers. 

Table 4-15 Measures for Outlier Analysis 

Obs. ei hii |DFFITS| Di |ti| 

1 0.017 0.613 0.405 0.0286 0.322 

7 -0.047 0.616 1.151 0.2228 0.908 

 

Three measures were used to check whether the two x-outliers highly influenced the 

model: 

1- Influence on Single Fitted Value – DFFITS:  

If |DFFITS|  √
 

 
  √

 

  
      , then the outlier is influential. |DFFITS| value of 

observation 7 (1.151) was larger than 0.961; however, this is not much larger than the cutoff. 

2- Influence on All Fitted Values – Cook’s Distance (Di): 

If     (         )   (        )       , then the outlier highly influences the fitted 

values. From Table 4-15, the two Di values were less than 0.922, so they did not influence the 

fitted values.  

It could be concluded from the two measures that the two x-outliers were not highly 

influential and, therefore, they were kept in the dataset.   
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The selected regression model was fitted. The parameter estimates and ANOVA table 

are shown in Table 4-16. The p values of the parameters were used to check whether the 

predictor variables were statistically significant. If the p-value is larger than the critical level (0.1), 

it means that the predictor variable is not significant. From Table 4-16, all p values were less 

than 0.1; therefore, all predictor variables were statistically significant. The variable inflation 

factors (VIF), shown in this table, were used to determine if serious multicollinearity is an issue 

in this model. If the VIF is not larger than 1.0 by much, it can be safely said that multicollinearity 

is not a problem in the model. All VIF’s in the table were very close to 1.0; therefore, 

multicollinearity was not a problem. R
2
adj (83.3%) and R

2
 (86.6%) were close to each other and 

relatively high, which means that the selected model explains the lab data sufficiently. 

Table 4-16 Model Parameter Estimates and ANOVA Table 

Predictor      Coef   SE Coef       T      P    VIF 

Constant    -2.3409    0.1228  -19.07  0.000 

R          0.033285  0.004007    8.31  0.000  1.038 

T          0.006895  0.001360    5.07  0.000  1.002 

P           0.25546   0.05258    4.86  0.000  1.108 

std(RX)    -0.05643   0.02101   -2.69  0.014  1.073 

std(TP)     0.07387   0.01706    4.33  0.000  1.002 

 

S = 0.0839373   R-Sq = 86.6%   R-Sq(adj) = 83.3% 

 

Analysis of Variance 

 

Source          DF       SS       MS      F      P 

Regression       5  0.91311  0.18262  25.92  0.000 

Residual Error  20  0.14091  0.00705 

Total           25  1.05402 

 

The selected model was: 

     (    )                                               (  )            (  ) 

To simplify the standardized interaction terms: 

   (  )  (
    ̅

  
)(
    ̅

  
)  (

       

     
) (
       

     
) 
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                                 -------- > (1) 

and 

   (  )  (
    ̅

  
)(
    ̅

  
)  (

        

      
) (
       

     
) 

                                   -------- > (2) 

After substituting ( ) and ( ) back into the model, it became: 

      (    )                                                                 

The final form of the model was thus: 

       
(                                                            )
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4.5 Modeling kBOD 

The same steps were followed while modeling kBOD. Also, six predictor variables were 

considered in the MLR analysis: Rainfall (R), Temperature (T), and four solid waste fractions; 

Food (F), Paper (P), Yard (Y), and Textile (X).  

4.5.1 Scatter Plots and Correlation Matrices 

The plot matrix in Figure 4-24 shows upward linear trends between kBOD and each of 

Rainfall, Temperature, and Paper. The kBOD vs. Food scatter plot shows a downward trend with 

some curvature.  

 

Figure 4-24 Plot Matrix between kBOD and the Predictor Variables 

The correlation matrix in Table 4-17 shows low r-values between kBOD and the predictor 

variables. Multicollinearity could be a problem between F and P, P and Y, and Y and X.   
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Table 4-17 Correlation Matrix between kBOD and the Predictor Variables 

       kBOD       R       T       F       P       Y 

R      0.262 

T      0.365  -0.008 

F     -0.287   0.196   0.126 

P      0.350  -0.189  -0.037  -0.441 

Y     -0.073   0.001  -0.031  -0.148  -0.395 

X     -0.132  -0.010  -0.034  -0.199  -0.326  -0.395 

 

4.5.2 Fitting a Preliminary Model and Checking Model Assumptions 

SAS output in Table 4-18 shows the preliminary MLR model that was fitted against the 

six predictor variables (R, T, F, P, Y, X). The model’s R
2
 value was very low (45.5%). The Model 

assumptions were checked before discussing the significance of the regression parameters. 

Table 4-18 Parameter Estimates and ANOVA Table of the kBOD Preliminary Model 

kBOD = - 0.0307 + 0.00245 R + 0.000966 T - 0.0497 F - 0.0010 P - 0.0229 Y 

       - 0.0278 X 

 

Predictor       Coef    SE Coef      T      P    VIF 

 

Constant    -0.03066    0.05189  -0.59  0.562 

R            0.00245    0.001189  2.06  0.053  1.077 

T            0.00097    0.000399  2.42  0.026  1.018 

F           -0.04966    0.04000  -1.24  0.230  6.135 

P           -0.00099    0.04588  -0.02  0.983  9.937 

Y           -0.02287    0.03960  -0.58  0.570  7.812 

X           -0.02777    0.03894  -0.71  0.484  7.458 

 

S = 0.0244617   R-Sq = 45.5%   R-Sq(adj) = 28.3% 

 

Analysis of Variance 

 

Source          DF         SS         MS     F      P 

Regression       6  0.0094875  0.0015812  2.64  0.049 

Residual Error  19  0.0113691  0.0005984 

Total           25  0.0208566 

 

Preliminary Model Assumptions Check: 

A- The linear model from assumption seemed to be violated. Residuals vs. X plot (Figure 

4-25) showed curvature. 
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B- The constant variance assumption was also violated. A funnel shape existed in the 

Residual vs. Fitted Values plot that is shown in Figure 4-26. 

C- Normality assumption was violated as well. Figure 4-27 shows the normal probability 

plot with left and right tails. 

4.5.3 Transformations 

Several transformations were applied to the preliminary MLR model to mitigate these 

violations of the model assumptions. The first attempt was √    . Residual plots of the model 

after this transformation can be found in APPENDIX B. The residual vs. fits plot still showed a 

slight funneling and the normal probability plot showed a right-skewed distribution; therefore, 

constant variance and normality assumption were not satisfied yet. A stronger transformation, 

     (    ), was attempted in the next step. The residual plots can also be seen in APPENDIX 

B. Both residual vs. fits plot and normal probability plot looked slightly better with this 

transformation. The residual vs. F plot showed a funnel shape and residual vs. X plot showed 

curvature. By transforming F and X into √      √ , in addition to      (    ) , the model 

assumptions were satisfied, as the next section will show.   
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Figure 4-25 Residuals vs. Predictor Plots of kBOD Preliminary Model  
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Figure 4-26 Plot of Residuals vs. Fitted Values of kBOD Preliminary Model 

 

Figure 4-27 Normal Probability Plot of kBOD Preliminary Model 
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Transformed Model Assumptions Check: 

Three transformation were performed on the model variables  

- Logarithm (base 10) of the response variable,      (    ) 

- Square root of the Food variable, √ . 

- Square root of the Textile variable, √ . 

The transformed response variable,      (    ), was regressed on R, T, √   P, Y, and 

√ . The new fitted model was: 

     (    )                                √                        √  

The model assumptions were checked again. 

A- Figure 4-28 shows Residuals vs. Predictor plots. Curvature did not exist in any of the plots. 

Therefore, the linear model form assumption was satisfied. 

B- The funnel shape disappeared from the Residual-Fits plot (Figure 4-29). The constant 

variance assumption was satisfied. 

C- The normal probability plot of the transformed model (Figure 4-30) did not show any tails. 

Therefore, the normality assumption was reasonable.  

Modified Levene Test and Normality Test were performed (see Appendix B) to confirm that 

the transformed model satisfied the constant variance and normality assumptions. 
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Figure 4-28 Residuals vs. Predictor Plots of the Transformed Model 
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Figure 4-29 Residuals vs. Fits Plot of the Transformed Model 

 

Figure 4-30 Normal Probability Plot of the Transformed Model 
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X-Outliers: 

None of the leverage values (hii) of the transformed model, that are shown in Table 4-19, 

exceeded the cutoff value .
  

 
 
 ( )

  
      /.  Therefore, there were no x-outliers. 

Y-Outliers: 

The Bonferroni test was performed and no |  |  values (Table 4-19) were found to 

exceed  

 .  
 

  
      /   .  

   

    
       /   (          )       ; therefore, there were 

no y-outliers. 

4.5.4 Interaction Terms and Model Search 

The possibility of adding interaction terms was checked using partial regression plots. 

Two of these plots showed linear trends, TY and TP as shown in Figure 4-31 (the rest of the 

partial regression plots can be seen in Appendix B).  These two terms were added to the model 

to improve its performance. Table 4-20 shows that the TP term was highly correlated with P 

(r=0.984) and the TY term was highly correlated with Y (r=0.986). Standardizing these two 

interaction terms clearly eliminated the high multicollinearity (see Table 4-20).  

 The same model search methods that were used for the kCOD model were also utilized 

here. These methods were best subsets, backward elimination, and stepwise regression. SAS 

outputs of the three methods are shown in Tables 4-21, 4-22, and 4-23, respectively.  All three 

methods were pointing to one potential good model with five predictor variables: R, T, √ , 

std(TP), and std(TY). 
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Table 4-19 Measures for Outlier Analysis 

Observation ei hii |ti| 

1 -0.327 0.325 2.175 

2 0.145 0.260 0.831 

3 0.003 0.186 0.017 

4 -0.058 0.452 0.383 

5 0.130 0.305 0.772 

6 0.188 0.191 1.045 

7 0.380 0.335 2.670 

8 -0.343 0.371 2.414 

9 0.027 0.174 0.145 

10 -0.196 0.316 1.199 

11 0.038 0.288 0.221 

12 -0.101 0.252 0.573 

13 0.016 0.267 0.092 

14 0.035 0.138 0.183 

15 0.104 0.320 0.621 

16 -0.018 0.263 0.103 

17 -0.119 0.179 0.644 

18 0.195 0.397 1.276 

19 0.212 0.234 1.227 

20 -0.273 0.256 1.648 

21 0.114 0.310 0.674 

22 0.190 0.176 1.049 

23 -0.109 0.118 0.566 

24 -0.117 0.397 0.746 

25 -0.077 0.215 0.426 

26 -0.040 0.278 0.227 

Max.  0.452 2.670 
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Figure 4-31 Partial Regression Plots with Linear Trends 

Table 4-20 Correlation Matrix Between TP, TY, and the Model Variables 

      LOG10(kBOD)        R      T      sqrt(F)     P       Y      sqrt(X) 

 

TP         0.304     -0.184   0.074   -0.468    0.984   -0.389   -0.351 

 

TY        -0.048     -0.034   0.063   -0.107   -0.390    0.986   -0.415  

------------------------------------------------------------------------- 

 

std(TP)    0.435      0.029   0.019   -0.051   -0.019    0.042    0.048  

 

std(TY)   -0.493     -0.249   0.016   -0.05     0.042   -0.027    0.046   
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Table 4-21 SAS Output of the Best Subsets Model Search Method 

Number    Adjusted 

In Model  R-Square   R-Square     C(p)        AIC      SBC    Variables  

 

  3      0.4998    0.5599     16.2493   -84.5766   -79.544   T rt(F) std(TY) 

  3      0.4357    0.5034     20.6432   -81.4383   -76.405   R T std(TY) 

  4      0.6169    0.6782      9.0415   -90.7181   -84.427   R T rt(F) std(TY) 

  4      0.5887    0.6545     10.8818   -88.8743   -82.583   R T rt(F) std(TP) 

 

  5      0.6676    0.7341      6.6923   -93.6781   -86.129   R T rt(F) std(TP)  

                                                                 std(TY) 

  5      0.6161    0.6929      9.8982   -89.9331   -82.384   R T rt(F) rt(X)   

                                                                 std(TY) 

 

  6      0.6761    0.7538      7.1546   -93.6858   -84.879   R T rt(F) rt(X)  

                     std(TP)  

                                                                  std(TY) 

  6      0.6706    0.7496      7.4824   -93.2447   -84.437   R T rt(F) P  

               std(TP)  

                                                                 std(TY) 

 

  7      0.6871    0.7747      7.5331   -93.9855   -83.920   R T rt(F) Y rt(X)  

                                                                 std(TP)  

                                                                 std(TY) 

  7      0.6657    0.7593      8.7279   -92.2716   -82.206   R T rt(F) P rt(X)  

                     std(TP)  

                                                                 std(TY) 

  8      0.6787    0.7815      9.0000   -92.7884   -81.465   R T rt(F) P Y  

                                                                rt(X) std(TP) 

                                std(TY) 

 

Table 4-22 SAS Output of the Backward Elimination Model Search Method 

Backward Elimination: Step 3 

Variable sqrt(X) Removed: R-Square = 0.7341 and C(p) = 6.6923 

Analysis of Variance 

                                                   Sum of      Mean 

Source                   DF        Squares         Square    F Value    Pr > F 

Model                     5        1.23243        0.24649      11.04    <.0001 

Error                    20        0.44644        0.02232 

Corrected Total          25        1.67887 

 

              Parameter     Standard 

Variable      Estimate        Error   Type II SS  F Value  Pr > F 

Intercept     -2.32328      0.21479      2.61163   117.00  <.0001 

R              0.02313      0.00743      0.21648     9.70  0.0055 

T              0.00997      0.00243      0.37489    16.79  0.0006 

sqrt(F)       -0.31131      0.08954      0.26984    12.09  0.0024 

std(TP)        0.06876      0.03354      0.09383     4.20  0.0537 

std(TY)       -0.08430      0.03447      0.13354     5.98  0.0238 

------------------------------------------------------------------------------ 

All variables left in the model are significant at the 0.1000 level. 
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Table 4-23 SAS Output of the Stepwise Selection Model Search Method 

Stepwise Selection: Step 5 

Variable std(TP) Entered: R-Square = 0.7341 and C(p) = 6.6923 

 

Analysis of Variance 

                                                Sum of           Mean 

Source                   DF        Squares         Square    F Value    Pr > F 

Model                     5        1.23243        0.24649      11.04    <.0001 

Error                    20        0.44644        0.02232 

Corrected Total          25        1.67887 

 

              Parameter     Standard 

Variable      Estimate        Error   Type II SS  F Value  Pr > F 

Intercept     -2.32328      0.21479      2.61163   117.00  <.0001 

R              0.02313      0.00743      0.21648     9.70  0.0055 

T              0.00997      0.00243      0.37489    16.79  0.0006 

sqrt(F)       -0.31131      0.08954      0.26984    12.09  0.0024 

std(TP)        0.06876      0.03354      0.09383     4.20  0.0537 

std(TY)       -0.08430      0.03447      0.13354     5.98  0.0238 

------------------------------------------------------------------------------ 

All variables left in the model are significant at the 0.1000 level. 

 

4.5.5 Checking Assumptions of the Selected Model 

Figures 4-32, 4-33, and 4-34 are the selected model’s residual plots. The residual-

predictor plots in Figure 4-32 did not show serious curvature or funneling and neither did the 

plot of residuals vs. fitted values (Figure 4-33). So, the linearity and constant variance 

assumptions were satisfied. The normal probability plot in Figure 4-34 showed a linear trend 

with no tailing; therefore, normality was reasonable. Two hypothesis tests were performed to 

confirm that the selected model satisfied the constant variance and normality assumptions.  
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Figure 4-32 Residual-Predictor Plots of the Selected Model 
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Figure 4-33 Residuals vs. Fits Plot of the Selected Model 

 

Figure 4-34 Normal Probability Plot of the Selected Model 
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Modified Levene Test:  

1- F-test  

- Hypothesis: 

                

              

- Decision Rule:  

If the p-value from the F-test is < 0.1, then reject   . 

Table 4-24 is SAS output of the Modified Levene Test (also called Brown and 

Forsythe test). The F-test p-value (denoted Pr > F) was 0.91 > 0.1, so failed to 

reject   .   

- Conclusion: 

Variances of d1 and d2 were equal. 

2- T-test was performed to check whether the means of d1 and d2 populations were equal. 

- Hypothesis: 

                               

                                    

- Decision Rule:  

If the p-value from the t-test is < 0.1, then reject   . The p-value from Table 4-

24 (denoted Pr > | t |) was 0.9655 > 0.1, so failed to reject   .   

- Conclusion: 

The model’s error variance was constant. 
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Table 4-24 SAS Output of Modified Levene Test 

The TTEST Procedure 

 

Variable:  d 

 

 group           N        Mean     Std Dev     Std Err     Minimum     Maximum 

  1             14      0.0990      0.0972      0.0260      0.0107      0.3151 

  2             12      0.0974      0.0936      0.0270      0.0151      0.2895 

  Diff (1-2)            0.00164     0.0956      0.0376 

 

                   Method           Variances        DF    t Value    Pr > |t| 

                   Pooled           Equal            24       0.04      0.9655 

                   Satterthwaite    Unequal      23.641       0.04      0.9654 

 

Equality of Variances 

Method      Num DF    Den DF    F Value    Pr > F 

Folded F        13        11       1.08    0.9119 

 

Normality Test:  

- Hypothesis: 

                           

                           

- Decision Rule:  

If the correlation coefficient p is <  (   ), then reject   .   is the critical value, 

  was 0.1 and   was 26.  (   )  (      )        

Table 4-25 is SAS output of the normality test.  

p = 0.9761 > 0.967, so failed to reject   .   

- Conclusion: 

  Normality assumption was satisfied. 
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Table 4-25 SAS Output of the Normality Test 

                                                    e          enrm 

  e                                            1.00000       0.97613 

  e(Log10(kBOD) | R T sqrt(F) std(TP) std(TY)) 

 

  enrm                                         0.97613       1.00000 

  Normal scores 

 

X-Outliers: 

Leverage values (hii) of two observations (see Table 4-26) exceeded the cutoff value 

.
  

 
 
 ( )

  
      /.  Therefore, observations 1 and 18 were x-outliers. 

Y-Outliers: 

The Bonferroni test was performed and no |  |  values were found to exceed 

 .  
 

  
      /   .  

   

    
       /   (          )      . 

Therefore, there were no y-outliers. 

Table 4-26 Measures for Outlier Analysis 

Obs. ei hii |ti| Di |DFFITS| 

1 -0.047 0.492 0.432 0.0314 0.425 

18 -0.095 0.488 0.879 0.124 0.858 

 

Three measures are used to check whether the two x-outliers were influential. 

Influence on Single Fitted Value – DFFITS:  

If |      |   √
 

 
  √

 

  
      , then the outlier is influential. From Table 4-26, 

neither |DFFITS| value was > 0.961, therefore, the two x-outliers did not highly influence  
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the fitted values.   

Influence on All Fitted Values – Cook’s Distance (Di): 

If     (         )   (        )       , then the outlier influences the fitted 

values. From Table 4-26, the two Di values were less than 0.922, so they did not highly 

influence the fitted values.  

It could be concluded from the two measures that the two x-outliers did not highly 

influence the fitted values or the regression model; therefore, they were kept in the dataset.   

The selected regression model was fitted. The parameter estimates and ANOVA table 

are shown in Table 4-27. The p values of the parameters are used to check whether the 

predictor variables are statistically significant. If the p-value is larger than the critical level (0.1), 

it means that the predictor variable is not significant. From Table 4-27, all p values were less 

than 0.1; therefore, the predictor variables were statistically significant. The variable inflation 

factors (VIF), shown in this table, were used to test whether the predictor variables were 

correlated with each other (multicollinearity). If the VIF was not larger than 1.0 by much, it could 

be safely said that multicollinearity effects were not expected in this model. All VIF’s in the table 

were very close to 1.0; therefore, multicollinearity was not serious. 

Table 4-27 Model Parameter Estimates and ANOVA Table 

Predictor      Coef   SE Coef       T      P    VIF 

Constant    -2.3232    0.2148  -10.82  0.000 

R          0.023125  0.007426    3.11  0.005  1.125 

T          0.009968  0.002433    4.10  0.001  1.012 

sqrt(F)    -0.31131   0.08954   -3.48  0.002  1.069 

std(TY)    -0.08430   0.03447   -2.45  0.024  1.296 

std(TP)     0.06875   0.03354    2.05  0.054  1.222 

 

S = 0.149416   R-Sq = 73.4%   R-Sq(adj) = 66.8% 

Analysis of Variance 

Source          DF       SS       MS      F      P 

Regression       5  1.23235  0.24647  11.04  0.000 

Residual Error  20  0.44650  0.02233 

Total           25  1.67885 
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The selected model was: 

     (    )                                   √            (  ) 

                                            (  ) 

To simplify the standardized interaction terms 

   (  )  (
    ̅

  
)(
    ̅

  
)  (

        

      
) (
       

     
) 

                                     --------- > (1) 

   (  )  (
    ̅

  
)(
    ̅

  
)  (

        

      
) (
       

     
) 

                                    --------- > (2) 

After substituting ( ) and ( ) back into the model it becomes: 

     (    )                                                        

                                                 √  

The final form of the model was thus: 

       
(                                                                   √ ) 
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4.6 Models Interpretation 

The selected models are repeated here for convenience. 

       
(                                                            ) 

       
(                                                                   √ ) 

The two models look similar in the first five terms. This is expected considering that 

COD and BOD concentration profiles followed almost the same trend in leachate collected from 

a given reactor. The rainfall rate (R) and Temperature (T) terms are positive in both models, 

which would be expected for the reasons mentioned in Chapter 2. The      model does not 

account for food and yard wastes, while the      model misses only textile variable out of the 

six predictor variables that were included in the MLR analysis. The first explanation for the 

missing variables is from a statistical point of view. The confidence level that was chosen during 

model search process was 90%. At this level, Food and Yard were found to be significant to the 

     model but not to the      model. Textile being a mixture of cotton, polyester, and other 

fabrics could have influenced      but not      because it is often not bioavailable. The next 

discussion is an attempt to explain the physical meaning of the absent variables from either 

model as well as the meaning of interaction terms in both models.  

Food waste is known to have a high content of biodegradable organics: therefore, it is 

reasonable that it would influence the BOD concentration profile (    ) of leachate more than it 

does in the case of     . Mathematically, the minus sign of √  indicates that this term is 

inversely proportional with     .  In other words, high food content in MSW is likely to slow 

down the biological decomposition of refuse in landfills. A study by Barlaz et al. (1997) on the 

toxicity of leachate due to anaerobic decomposition of many refuse types suggested that food 

waste is highly toxic in the acidic phase. The study also suggested that anaerobic 

decomposition could be inhibited in landfills with large amounts of food waste. Reactor #10 in 
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this study contained food waste only. It failed due to excessive accumulation of acid (pH plot 

shown in Figure 4-35).  

 

Figure 4-35 Plot of pH vs. Time for Reactor #10 

In both models, the paper term (P) has a minus sign and is followed by a temperature-

paper (TP) interaction term. To understand how these two terms affect both models, predicted 

values of kCOD and kBOD were calculated by changing P and fixing all other variables in the two 

models. The same operation was performed for four temperatures (70, 80, 90, and 100  ). 

Figures 4-36 and 4-37 show two plots of predicted k value vs. paper. Both k values slightly 

decrease as the fraction of paper waste increases at 70  . When temperature increases, the 

slope of k-P curve increases. If this behavior of the curves were to be translated into physical 

sense, it would mean that paper waste decomposes better/faster at higher temperatures.  

A similar type of plot was created for Textile (X) and Rainfall Rate (R) and another plot 

for Yard (Y) and Temperature (T) since they have interaction effects in kCOD model and kBOD 

model, respectively. The two plots are shown in Figures 4-38 and 4-39.  
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Figure 4-36 Plot of Predicted kCOD vs. Paper and Temperature 

 

Figure 4-37 Plot of Predicted kBOD vs. Paper and Temperature 
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It makes sense that textile appears only in the COD model, since a substantial part of 

the textile was not biodegradable (polyester, for example). The predicted kCOD value in Figure 4-

38 increases with increasing textile waste at the low rainfall rate (2 mm/day). As rainfall rate 

increases, kCOD is also increasing but the slope of kCOD-Textile curve is decreasing. In other 

words, at high rainfall rates, decomposition of refuse in the reactors slows down when the 

amount of textile waste increases. In several reactors, textiles were observed to retain leachate. 

If the textile retained too much leachate, it could cause the waste moisture content to increase 

beyond optimum. This would lead to a decrease in the waste decomposition rate, and thus a 

decrease in the rate of COD accumulation in the leachate. The temperature-yard (TY) 

interaction effect changes the predicted kBOD value significantly as shown in Figure 4-39. The 

four lines in this plot intersect at the 0.5-yard fraction. It is not clear at this point why the 

temperature-yard interaction term behaves this way in the model. 

Paper and yard/wood wastes contain high amounts of lignin, which could be 

responsible for resisting decomposition or leaching process in landfills due to its high durability 

(Barlaz et al., 1997). Lignin is known to have a complex structure that might require higher 

temperatures to break down or decompose (Brebu & Vasile, 2010).  

Due to its complex composition and structure, the degradation of lignin is strongly 
influenced by its nature, reaction temperature, heating rate and degradation atmosphere, 
which also affects the temperature domain of degradation, conversion and product 
yields. (Brebu & Vasile, 2010)   

 

In order to validate both models, field data that includes information on the waste 

composition, temperatures, and precipitation rates is required. Both models will be validated in 

future work. 
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Figure 4-38 Plot of Predicted kCOD vs. Textile and Rainfall Rate 

 

Figure 4-39 Plot of Predicted kBOD vs. Yard and Temperature 
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Solid waste usually decomposes faster in lab-scale reactor landfills than actual landfills 

because of the ideal conditions in laboratory experiments (Youcai et al., 2002). Therefore, the 

kBOD and kCOD values calculated using the two models were expected to be larger than actual 

situations. In an attempt to come up with a scale factor for the k values, BOD and COD data 

from a field-scale study (Ozkaya et al., 2006) was regenerated as shown in Figure 4-40. The 

field’s kBOD and kCOD values were found to be -0.0125 and -0.0135 day
-1

, respectively. When the 

two models were used, kBOD and kCOD were calculated to be -0.026 and -0.0256 day
-1

, 

respectively. Therefore, 

                  
    (     )

    (     )
 
       

      
     

  and 

                  
    (     )

    (     )
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(a) 

 
(b) 

Figure 4-40 Determining BOD and COD Scale Factor between Lab and Field 
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Chapter 5 

Conclusions and Recommendations  

5.1 Conclusions 

The main objective of this study was to develop two mathematical relationships that 

describe the behavior of leachate BOD and COD concentration profiles in terms of rainfall rate, 

temperature, and composition of waste. Experiments involved the design and operation of 27 

lab-scale reactor landfills. Multiple linear regression analysis was utilized to build the two 

models.  

 The approximate peak BOD concentrations in all the reactors ranged between 856 and 

46,134 mg/L and peak COD concentrations were between 2,458 and 64,032 mg/L. The time 

it took a given reactor to reach the peak BOD or COD value varied significantly (6-102 days) 

among all the reactors. The wide range emphasizes the significance of temperature, rainfall 

rate, and waste composition (the experimental factors) in the leachate quality studies.  

 The 85   reactors appeared to have higher waste decomposition rates (higher BOD and 

COD) than other reactors except when a reactor was also operated under the highest rainfall 

rate (12 mm/day). This observation suggests that among the three temperatures adopted in 

this study, 85    is probably the closest to being the optimum temperature for microbial 

growth. 

 The 2-mm/day reactors showed longer time (180-200 days) in reaching minimum or stable 

BOD and COD concentrations and BOD:COD ratio than all other reactors. Low moisture 

content in those reactors led to slow waste stabilization rates. Many previous researchers 

reported the same observation. 
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 Food waste reactors produced the highest BOD (46,134 mg/L) and COD (64,032 mg/L) 

leachate and textile waste produced the lowest (BODmax=8,960 mg/L and CODmax= 16,054 

mg/L). 

 The two models developed in this study are: 

       
(                                                            ) 

and 

       
(                                                                   √ ) 

Both models show that increasing rainfall rate and temperature leads to higher BOD 

and COD content in leachate, which translates into faster waste decomposition. The kCOD model 

suggests that only paper and textile are the types of refuse that contribute to shaping leachate’s 

COD concentration profile. Paper, yard, and food waste components were found to be 

significant in the kBOD model. The TP interaction term in both models suggests that paper waste 

decomposes faster at higher temperatures. In future work, the two models will be validated 

using field data.  

5.2 Recommendations 

Ideas for future research include the following: 

 There are different types of waste with different characteristics within each waste category 

(yard, paper, textile, and food) studied in this research. For example, yard waste might 

include leaves, branches, thin grass, and other forms. The biodegradability of each type is 

most probably different than the others in a landfill. Therefore, it would be a good idea to 

separate each waste component in this manner to see the effects of temperature, moisture 

content, and other influential factors on the decomposition rate of each form.  

 Analysis of BOD and COD content in leachate can be accompanied with methane 

generation rates for a better understanding of the relationship between the rate/extent of 
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waste decomposition and the change in weather conditions (precipitation rate and 

temperature) and waste composition in a landfill. 

 Since lab experiments involve relatively small portions of waste, it is likely that the rate of 

waste decomposition would be much faster than it would be in actual landfills. Hence, it is 

important to find a way to relate lab results with actual situations. When a proper dataset 

becomes available for validating the two models in this study, a scaling factor can be 

calculated using k values from both lab experiments and actual landfills. The same method 

can be followed to study other leachate constituents. 

 To better simulate actual landfills, rainfall can be added to the reactors at intervals (once a 

week, for example) other than daily. 

 Similar experiment can be conducted with temperatures beyond the range tested (>100   

and/or <70  ). This would, for example, apply for the Arabian Gulf countries, where 

temperatures stay well above 100   from June to August. 

 Similar work can be conducted with bioreactors, which involve leachate recirculation. 

 A comparative study can be conducted where water is added on a per-volume of waste 

basis, rather than per-inches of rainfall basis. This would reduce leaching of microbes and 

nutrients. 
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Appendix A 

Plots of Exponential Curve Fitting 
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BOD Curves 
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COD Curves 
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Appendix B 

Residual Plots for Several Transformations and Hypothesis Tests 
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Square Root kCOD  R, T, F, P, Y, X 

 

Residuals vs. Fitted Values 

 

Normal Probability Plot 
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Plots of Residuals vs. Predictor Variables 
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Log10(kCOD)  R, T, F, P, Y, X 

 

Residuals vs. Fitted Values 

 

Normal Probability Plot 



 125 

 

Plots of Residuals vs. Predictor Variables 
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Hypothesis Tests for the kCOD Transformed Model: 

A- Modified Levene Test is a tool to test whether the residuals have a constant variance. 

It divides the 26 residuals, at their median value, into two groups of 13 observations each; d1 and 

d2. Variances (       ) of the two groups are then tested to check whether they are equal. 

1- F-test  

- Hypothesis: 

                  

              

- Decision Rule:  

If the p-value from the F-test is < 0.1, then reject   . 

Table B-1 shows SAS output of the Modified Levene Test (also called Brown and 

Forsythe test). The F-test p-value (denoted Pr > F) was 0.4564 which was > 0.1, 

so we failed to reject   .   

- Conclusion: 

  Variances of d1 and d2 were equal. 

2- T-test is performed to check whether the means of d1 and d2 populations are equal. 

- Hypothesis: 

                                

                                     

- Decision Rule:  

                    If the p-value from the t-test is < 0.1, then reject   . 
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      The p-value from Table B-1 (Pooled-Pr > | t |) was 0.6744 > 0.1, so we failed to reject 

  .   

- Conclusion: 

  The model’s error variance was constant. 

Table B-1 SAS Output of the Modified Levene Test 

The TTEST Procedure 

Variable:  d 

 

group           N        Mean     Std Dev     Std Err     Minimum     Maximum 

1              13      0.0911      0.0862      0.0239           0      0.2964 

2              13      0.0781      0.0692      0.0192           0      0.1926 

Diff (1-2)             0.0130      0.0782      0.0307 

 

Method           Variances        DF    t Value    Pr > |t| 

Pooled           Equal            24       0.43      0.6744 

Satterthwaite    Unequal      22.922       0.43      0.6746 

 

Equality of Variances 

                  Method      Num DF    Den DF    F Value    Pr > F 

                  Folded F        12        12       1.55    0.4564 

 

B- The Normality Test is performed to confirm whether the residuals are normally 

distributed. It is conducted by calculating the correlation coefficient between the residuals (e) and 

their expected values under normality (enrm).  

- Hypothesis: 

                            

                            

- Decision Rule:  

If the correlation coefficient p is <  (   ), then reject   .   is the critical value,   

is 0.1 and   is 26.  (   )  (      )        

Table B-2 shows SAS output of the normality test.  

p = 0.9837 > 0.967, so we failed to reject   .   
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- Conclusion: 

Normality assumption was satisfied. 

Table B-2 SAS Output of the Normality Test 

                                          e          enrm 

e(Log10kCOD | R T sqF P sqY X)       1.00000       0.98365 

 

enrm                                 0.98365       1.00000 

Normal scores 
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Partial Regression Plots – Transformed kCOD Model 
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Square Root kBOD  R, T, F, P, Y, X 

 

Residuals vs. Fitted Values 

 

Normal Probability Plot 
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Plots of Residuals vs. Predictor Variables 
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Log10(kBOD)  R, T, F, P, Y, X 

 

Residuals vs. Fitted Values 

 

Normal Probability Plot 
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Plots of Residuals vs. Predictor Variables 
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Hypothesis Tests for the kBOD Transformed Model: 

A- Modified Levene Test  

1- F-test  

- Hypothesis: 

                  

              

- Decision Rule:  

If the p-value from the F-test is < 0.1, then reject   . 

Table B-3 shows SAS output of the Modified Levene Test. The F-test p-value 

(denoted Pr > F) was 0.8554 which was > 0.1, so we failed to reject   .   

- Conclusion: 

  Variances of d1 and d2 were equal. 

2- T-test is performed to check whether the means of d1 and d2 populations are equal. 

- Hypothesis: 

                                

                                     

- Decision Rule:  

                          If the p-value from the t-test is < 0.1, then reject   . 

             The p-value from Table B-3 (Pooled-Pr > | t |) was 0.9101 > 0.1, so we failed to 

reject   .   

- Conclusion: 

  The model’s error variance was constant. 
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Table B-3 SAS Output of the Modified Levene Test 

The TTEST Procedure 

Variable:  d 

 

 group           N        Mean     Std Dev     Std Err     Minimum     Maximum 

 1              13      0.1322      0.1127      0.0312           0      0.3545 

 2              13      0.1374      0.1189      0.0330           0      0.3977 

 Diff (1-2)           -0.00518      0.1158      0.0454 

 

                  Method           Variances        DF    t Value    Pr > |t| 

                  Pooled           Equal            24      -0.11      0.9101 

                  Satterthwaite    Unequal      23.931      -0.11      0.9101 

 

Equality of Variances 

               Method      Num DF    Den DF    F Value    Pr > F 

               Folded F        12        12       1.11    0.8554 

 

B- The Normality Test  

- Hypothesis: 

                            

                            

- Decision Rule:  

If the correlation coefficient p is <  (   ), then reject   .   is the critical value,   

is 0.1 and   is 26.  (   )  (      )        

Table B-4 shows SAS output of the normality test.  

p = 0.9896 > 0.967, so we failed to reject   .   

- Conclusion: 

Normality assumption is satisfied. 

Table B-4 SAS Output of the Normality Test 

                                          e          enrm 

e(Log10kBOD | R T sqF P Y sqX)              1.00000       0.98961 

 

enrm                                 0.98961       1.00000 
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Partial Regression Plots – Transformed kBOD Model 
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